
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

Approved for public release; distribution is unlimited

DESIGN AND RAPID PROTOTYPING OF FLIGHT
CONTROL AND NAVIGATION SYSTEM FOR AN

UNMANNED AERIAL VEHICLE

by

Bock-Aeng Lim

March 2002

 Thesis Advisor: Isaac I. Kaminer
 Co-Advisor: Oleg A. Yakimenko

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2002

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Design and Rapid Prototyping of Flight Control and
Navigation System for an Unmanned Aerial Vehicle
6. AUTHOR(S) Bock-Aeng Lim

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING /
MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

 The work in this thesis is in support of a larger research effort to implement a cluster of autonomous airborne
vehicles with the capability to conduct coordinated flight maneuver planning and to perform distributed sensor
fusion. It seeks to design and implement an onboard flight control and navigation system for NPS FROG UAV,
which will be used as the autonomous airborne vehicle for the research, using the newly marketed xPC Target
Rapid Prototyping System from The Mathworks, Inc. Part I briefly introduces the aircraft and explains the
necessity for an onboard computer for the UAV. Part II describes the construction of the miniature aircraft
computer, INS/GPS and air data sensor integration implementation as well as the rapid prototyping process. Part
III covers the process to create a 6DOF model for the aircraft and the design of the aircraft autopilot, while Part IV
presents a vision-based navigation algorithm that can be implemented on the UAV to give it some form of
autonomous flight trajectory planning capability. Ground test results showing successful onboard data integration
are given to conclude this report.

15. NUMBER OF
PAGES 121

14. SUBJECT TERMS Unmanned Aerial Vehicles, UAV, Autopilot, xPC Target, Rapid
Prototyping, Guidance and Control

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 Rev.-89)
Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

DESIGN AND RAPID PROTOTYPING OF FLIGHT CONTROL AND
NAVIGATION SYSTEM FOR AN UNMANNED AERIAL VEHICLE

Bock-Aeng Lim
Major, Republic of Singapore Air Force

B.Eng.(Electrical), National University of Singapore, 1993

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING (AVIONICS)

from the

NAVAL POSTGRADUATE SCHOOL
March 2002

Author: Bock-Aeng Lim

Approved by: Isaac I. Kaminer, Thesis Advisor

Oleg A. Yakimenko, Co-Advisor

 Max F. Platzer, Chairman
Department of Aeronautics and Astronautics

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The work in this thesis is in support of a larger research effort to implement a

cluster of autonomous airborne vehicles with the capability to conduct coordinated flight

maneuver planning and to perform distributed sensor fusion. Specifically, it seeks to

design and implement an onboard flight control and navigation system for NPS FROG

UAV, which will be used as the autonomous airborne vehicle for the research, using the

newly marketed xPC Target Rapid Prototyping System from The Mathworks, Inc. Part I

briefly introduces the aircraft and explains the necessity for an onboard computer for the

UAV. Part II describes the construction of the miniature aircraft computer, INS/GPS and

air data sensor integration implementation as well as the rapid prototyping process. Part

III covers the process to create a 6DOF model for the aircraft and the design of the

aircraft autopilot, while Part IV presents a vision-based navigation algorithm that can be

implemented on the UAV to give it some form of autonomous flight trajectory planning

capability. Preliminary ground test results are presented in Part V to conclude this study.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND ..1
B. OBJECTIVES ..1
C. THE AIRCRAFT...2
D. CONTROL SETUP & ITS LIMITATIONS ...5

1. Old Control Setup..5
2. Alternative Servo Command ..6

E. PRIMARY INSTRUMENTS..7
1. Inertial Measurement Unit..7
2. Global Positioning System Receiver...9
3. Freewave® Radio Modems ..10
4. Differential Pressure Sensor ...11

II. RAPID PROTOTYPING OF NEW CONTROL SETUP......................................13
A. PROPOSED CONTROL SETUP...13
B. THE RAPID PROTOTYPING SYSTEM ...14

1. xPC Target Rapid Prototyping Package15
2. Host Computer ...16
3. Target Airborne Computer...17

C. SOFTWARE INTERFACE DRIVERS ...19
1. IMU Data Interface..20
2. GPS Data Interface ..24

D. COMBINED I/O TEST ...27

III. FLIGHT CONTROLLER DESIGN ..29
A. 6DOF AIRCRAFT MODEL DEVELOPMENT ..29

1. Equations of Motions...29
2. Forces and Moments on Aircraft..32
3. 6DOF Model of FROG UAV in Simulink..37

B. CLASSICAL CONTROLLER DESIGN...38
1. Yaw Damper Design ..39
2. Speed Controller ..40
3. Altitude Controller...41
4. Heading Controller ..44
5. Complete Controller ..45

C. LQR CONTROLLER DESIGN ...46
1. Stabilizable and Detectable Criteria ..47
2. Synthesis Model and Controller Structure......................................47
3. Complete LQR Controller ..50

D. CONTROLLER COMPARISON ..51

IV. NAVIGATION ALGORITHM DESIGN..57
A. SHIPBOARD LANDING PROBLEM FORMULATION.........................57
B. AIRCRAFT-SHIP ORIENTATION DETERMINATION........................62

 viii

C. ALGORITHM SIMULATION ..63

V. GROUND TEST RESULTS ...65
A. DATA ANALYSIS...65

1. GPS Signals ..65
2. A/D and PWM Signals...69
3. Crossbow Signals ...71

B. EMI ISSUES...73

VI. CONCLUSIONS AND RECOMMENDATIONS...75
A. CONCLUSIONS ..75
B. RECOMMENDATIONS...76

APPENDIX A. DESCRIPTION OF FROG UAV...77

APPENDIX B. AIRBORNE COMPUTER I/O INTERFACE79
1. I/O ADDRESS ..79
2. I/O BOARD PIN OUT CONNECTION AND USAGE..............................80
3. INTERRUPT ROUTINE (IRQ) ASSIGNMENT83

APPENDIX C. SOFTWARE DRIVERS & LQR DESIGN CODE.........................85
1. CROSSBOW AHRS DATA RECEIVE DRIVER......................................85
2. GPS DATA RECEIVE DRIVER ...89
3. GPS GPGGA MESSAGE DECODER ..93
4. GPS GPRMC MESSAGE DECODER ..97
5. MATLAB CODE FOR LQR CONTROLLER DESIGN101

LIST OF REFERENCES..103

INITIAL DISTRIBUTION LIST ...105

 ix

LIST OF FIGURES

Figure I.1 NPS FROG UAV...3
Figure I.2 FROG UAV 3 View Drawing..3
Figure I.3 AC-104 Ground Control Computer ...4
Figure I.4 Futaba® Transmitter, Receiver and Servos ..4
Figure I.5 Original Flight Control Setup (From [4]) ..6
Figure I.6 Crossbow Technology’s AHRS400CA-100..7
Figure I.7 Trimble Ag132 GPS Antenna and Receiver Mounted on FROG......................9
Figure I.8 DGR-115 Wireless Serial Modem (left) Mounted on UAV (right).................10
Figure I.9 Differential Pressure Transducer ...12
Figure I.10 Pitot Probe on UAV...12
Figure II.1 New Control Setup...13
Figure II.2 xPC Target Setup ...15
Figure II.3 New Miniature Airborne Computer...17
Figure II.4 Location of Miniature Computer on UAV...18
Figure II.5 Top Panel Layout of New Computer ...19
Figure II.6 Crossbow AHRS Data Receive and Decoding Block Diagram.......................20
Figure II.7 Simulink Block to Decode Crossbow Data ...23
Figure II.8 Decoded Euler Angle and Rates from Crossbow ..23
Figure II.9 NMEA-0183 Message Structure..24
Figure II.10 GPS Message Receive Block Diagram..25
Figure II.11 GPS Message Decoding Block Diagram ...25
Figure II.12 Block Diagram For Combined Test...27
Figure II.13 Combined Test User Interface Screen ...28
Figure II.14 PWM Signal Generated by Computer Matches Command28
Figure III.1 Simulink Blocks Implementing 6DOF Model of FROG UAV38
Figure III.2 Root Locus of Yaw Damper With and Without Compensator39
Figure III.3 Yaw Damper Block Diagram...40
Figure III.4 Yaw Damper Responses ..40
Figure III.5 Speed Control Block Diagram...41
Figure III.6 Speed Controller Responses ..41
Figure III.7 Altitude Controller Block Diagram ...42
Figure III.8 Root Locus of Altitude Controller With Compensator....................................42
Figure III.9 Pitch Control Loop Responses...43
Figure III.10 Altitude Control Loop Responses..43
Figure III.11 Altitude Control Inner and Outer Loops Bode Plots43
Figure III.12 Heading Controller Block Diagram...44
Figure III.13 Roll and Heading Control Loop Responses...44
Figure III.14 Heading Control Inner and Outer Loops Bode Plots45
Figure III.15 Complete Flight Controller using Classical Control Design45
Figure III.16 Overview of Synthesis Model for Controller...48
Figure III.17 Creating Real Synthesis Pole ...48
Figure III.18 Creating Complex Synthesis Pole..48
Figure III.19 Linear Integral LQR Controller Structure..49
Figure III.20 Non-Linear LQR Controller Implementation ..50

 x

Figure III.21 LQR Controller Performance with Non-linear UAV Model51
Figure III.22 ANSI/AIAA Sign Convention for Control Surface Deflection [From 10]......52
Figure III.23 Classical Controller – Response to Altitude Change of +20 feet53
Figure III.24 Classical Controller - Response to Speed Change of +12 fps53
Figure III.25 Classical Controller - Response to Heading Change of +0.2 rad53
Figure III.26 LQR Controller – Response to Altitude Change of +20 feet...........................54
Figure III.27 LQR Controller - Response to Speed Change of +12 fps................................54
Figure III.28 LQR Controller - Response to Heading Change of +0.2 rad...........................55
Figure IV.1 Examples showing images of three RPs ..57
Figure IV.2 The 3-point geometry applied to shipboard navigation58
Figure IV.3 Three-point perspective pose estimation problem geometry59
Figure IV.4 Horizontal projection of a/c’s and ship’s motion...64
Figure IV.5 3D representation of the simulation scenario ..64
Figure V.1 GPS RMC UTC (left) and RMC Status (right)..66
Figure V.2 GPS RMC Lattitude (left) and Latitude Direction (right)66
Figure V.3 GPS RMC Longitude (left) and Longitude Direction (right)66
Figure V.4 Position Plot From RMC data (left) and GPS RMC Track (right)67
Figure V.5 GPS RMC Ground Speed (left) and dd/mm/yy (right)....................................67
Figure V.6 GPS RMC Magnetic Variation (left) and MV Angle (right)...........................67
Figure V.7 GPS GGA UTC (left) and Number of Satellite Vehicles Used (right)............68
Figure V.8 GPS GGA Fix Quality (left) and HDOP (right) ..68
Figure V.9 GPS GGA Antenna Height (left) and DGPS Data Age (right)........................69
Figure V.10 Aileron and Elevator Servo Voltages measured by A/D69
Figure V.11 PWM Commands Issued to Aileron and Elevator Servos70
Figure V.12 Rudder and Throttle Servo Voltages measured by A/D70
Figure V.13 PWM Commands Issued to Rudder and Throttle ..70
Figure V.14 Crossbow IMU Signals ..72

 xi

LIST OF TABLES

Table I.1 Serial Outputs From AHRS400CA-100 In Various Sensor Modes...................8
Table I.2 Trimble Ag132 Messages ..10
Table I.3 Freewave® Radio Modem Specifications ..11
Table II.1 Serial Data Structure From Crossbow AHRS400CA-100...............................22
Table II.2 GGA Message Fields ...26
Table II.3 RMC Message Fields...26
Table III.1 Classical Controller Bandwidth Gain and Phase Margins...............................45
Table III.2 LQR Controller Bandwidth Gain and Phase Margins49
Table B.1 I/O Resource Addresses...79
Table B.2 QMM-5 (PWM Generation) Pin Interface...80
Table B.3 QMM-10 (PWM Capture) Pin Interface..81
Table B.4 AIM16 (Servo Pots & Differential Pressure Sensor) Pin Interface82
Table B.5 IRQ Assignment...83

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

I am grateful for the assistance I received from many people on this project. In

particular, I would like to thank my thesis advisors Prof. Isaac Kaminer and Prof. Oleg

Yakimenko for their directions and the latitude they allowed me to enjoy throughout this

project. Their friendly nature created a conducive and informal learning environment for

me. Their support and encouragement also made my job less stressful whenever I hit

obstacles.

I am also grateful to Dr. Vladimir Dobohodkov, who is NRC Research Associate

in the Aeronautical Department at NPS, for his technical assistance throughout this

project. He has been a patient mentor and an outstanding colleague to work with. We

spent many hours discussing problems encountered and exchanging ideas on how to

solve them.

Thanks is also due to Jerry Lentz, our resident physicist and electronics guru in

the department, who helped to package the computer and its power supply into a box that

fitted nicely into the UAV, and later for his advice in the EMI investigations and to Don

Meeks who had helped to disassemble, assemble and transport the UAV whenever I had

to move it between to the Controls Lab and UAV Lab, for the machining work on the

computer casing and for the tireless help he provided during the many ground tests.

Thanks also to CDR Christopher Flood who had taught me much about the UAV and its

control architecture when I understudied him while he was working on his thesis.

Most of all, a big thanks to my wife Irene who had been most understanding and

supportive of the long hours I had to spend in the lab. She excused me from many

household chores especially in the final quarter and even readily agreed to forego our

precious Christmas break in the US just so that I could work on the project between the

academic quarters.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. BACKGROUND

The Navy envisions that the battlefield of the future would include clusters of

autonomous mobile agents equipped with a large number of sensors connected by

wireless networks in a hostile and highly dynamic combat environment susceptible to

hardware failures and jamming. As a result, changes in network topology and loss of

connectivity between agents are expected. To allow the autonomous agents to continue

their missions despite these changes in the network quality of service (QoS), they must

have adequate ability to integrate data from as many working onboard sensors as possible

to assess accurately the situational picture for decision making and for executing

appropriate flight maneuvers.

The research question in support of such a battlefield setup is the execution of

command, control and autonomous intelligent flight maneuver planning of a group of

unmanned aerial vehicles and the construction of a distributed adaptive architecture for

fusing sensor data over dynamically varying wireless networks [1]. The main thrust of

this thesis is in line with the first research area mentioned above, i.e., to develop the basic

framework to implement command and control (C2) of a friendly cluster of autonomous

unmanned aerial vehicles (UAVs) including algorithms for flight navigation and

trajectory tracking in order to adopt certain flight profiles at various stages of the mission.

B. OBJECTIVES

This thesis seeks to implement an autonomous flight control and target approach

guidance algorithm using the NPS FROG UAV as a test platform. The scope of work

includes designing the autopilot for the aircraft, exploring suitable trajectory planning

navigation algorithms and assembling an onboard computer to perform data fusion, flight

control and guidance commands computation.

In addition, the timing of this effort coincided with the emergence of the xPC

Target Rapid Prototyping System from The Mathworks, Inc. Such a system offers

 2

enormous flexibility for implementing variants of the guidance and control algorithm or

changes to the hardware architecture with significantly compressed design-to-flight-test

time. Hence, a secondary objective of this project is to explore and accumulate expertise

on this new tool, and apply it to the intended setup.

Details of both of these objectives will be covered in subsequent chapters. The

rest of this chapter will serve as a lead-in by introducing the FROG UAV, which will act

as the test aircraft, its instrumentation and the background on why an onboard computer

is deemed necessary to implement the intended research objective.

C. THE AIRCRAFT

NPS’s FROG UAV, shown in Figure I.1, has been the test bed for advanced

control and airborne sensor projects at the Naval Postgraduate School [2,3]. It is

manufactured by BAI Aerosystems as the BAI-TERN (Tactically Expendable Remote

Navigator) and derives from the FOG-R variant of the BAI-TERN used by the US Army,

hence the name ‘FROG’. It is a small high wing monoplane with conventional elevator,

rudder, ailerons and flaps, and uses servomotors designed for radio-controlled airplanes

to drive the control surfaces. (Figure I.2). More details on its physical characteristics and

engine are documented in Appendix A and in [4].

Previous control system projects made use of only very basic inertial sensing and

a simple electromechanical autopilot in the aircraft. In the existing setup, the computer

(shown in Figure I.3) which monitors flight data and computes aircraft control commands

is located on the ground. Hence, raw flight data has to be downlinked from the aircraft to

the computer via wireless serial modems for processing. Computed control inputs in turn

are pulse-code modulated and re-transmitted back to the aircraft using a hand-held

Futaba® remote transmitter, shown in Figure I.4, for the Futaba® receiver in the aircraft to

interpret and output PWM commands to drive servos that controls the control surfaces.

 3

Figure I.1 NPS FROG UAV

Figure I.2 FROG UAV 3 View Drawing.

 4

Figure I.3 AC-104 Ground Control Computer

Figure I.4 Futaba® Transmitter, Receiver and Servos

 5

D. CONTROL SETUP & ITS LIMITATIONS

The original setup introduced above imposes significant limitations on the

complexity of the flight controller because of latency time to control commands

generated by the computer on the ground. It also severely restricts the flight profiles that

can be experimented due to operating range. An alternative method of controlling the

servos to shorten the delay between computer command output and servo actuation was

explored in [5]. It too could not fully meet desired specifications. The limitations are

explained below.

1. Old Control Setup

In the original control scheme for the UAV illustrated in Figure I.5, the flight

control computer was an AC-104 computer situated on the ground. Command signals

from the AC-104 computer had to be converted to a pulse-code modulated (PCM) signal

by a Futaba radio controlled transmitter, which broadcasts them to the airplane. The

Futaba receiver in the FROG UAV decodes the PCM signal and generates pulse-width-

modulated (PWM) commands for each of the control servos to control the aircraft. At the

same time, in the feedback channel, sensor outputs are captured by auxiliary

microprocessors, digitized and transmitted via wireless modem to the flight control

computer on the ground for processing. Such a setup imposed severe controller

restrictions due to the latency times for data downlink, control inputs computation on

ground and the command uplink. In fact, the command uplink latency alone was

measured to be approximately 170 ms in [4] and was found to generate unacceptable

delay for any practical control frequency in the range of 20Hz to 40Hz.

 6

AC - 104
Computer

TT8 GPS/IMU

FreeWave
Modem

IMU
Computer

Position
Transducers

Servo
Actuators

FreeWave
Modem

Slave
Futaba

Master
Futaba

Futaba
Receiver

(Analog)

(PWM)

(PPM)

(PCM)

(Mechanical)
(Analog)

(Serial)
38400 bps

(Serial)
38400 bps

(Various)

AC - 104
Computer

TT8 GPS/IMU

FreeWave
Modem

IMU
Computer

Position
Transducers

Servo
Actuators

FreeWave
Modem

Slave
Futaba

Master
Futaba

Futaba
Receiver

(Analog)

(PWM)

(PPM)

(PCM)

(Mechanical)
(Analog)

(Serial)
38400 bps

(Serial)
38400 bps

(Various)

Figure I.5 Original Flight Control Setup (From [4])

2. Alternative Servo Command

The short range of the Futaba® remote controller and command path latency led to

a feasibility study of using an alternate command uplink method by CDR Chris Flood and

the author in [5]. In the proposed scheme, control commands were sent via serial modem

from the AC-104 directly to a small onboard micro-controller which generates the PWM

commands to the servo instead of routing the commands through the Futaba® remote

control. Such a setup reduced the command latency to 76 msec. It was adequate to

implement a workable controller but still placed severe restrictions on the controller

performance.

The limitations mentioned above would have severe implications on the

implementation of command and control for a cluster of UAVs. In order to support that

objective, these constraints need to be overcome first. The proposed solution was to

install a miniature computer in the UAV in order to minimize flight data and control

commands transfer as well as to give the aircraft onboard computational capability to

perform more sophisticated flight maneuver planning autonomously. This new hardware

and control architecture implementation forms a significant part of this thesis work and is

discussed in Chapter II.

 7

E. PRIMARY INSTRUMENTS

The FROG UAV can be configured with a variety of instruments such as air-data

sensors, an inertial measurement unit (IMU), a GPS receiver, an instrumented nose boom

and even a digital camera. In this project, only sensors necessary for basic aircraft

control, navigation and communication are installed as a basic configuration. These

instruments are introduced in the following sub-sections.

1. Inertial Measurement Unit

A new altitude heading reference sensor was installed on the UAV for this

project. This is the AHRS400CA-100 manufactured by Crossbow Technology, Inc shown

in Figure I.6. The AHRS combines linear accelerometers, rotational rate sensors, and

magnetometers to measure linear acceleration, angular velocity, and magnetic flux for all

three orthogonal axes. It then utilizes a sophisticated Kalman filter algorithm to allow the

unit to track orientation accurately through dynamic maneuvers in order to compute

stabilized values of pitch, roll and true-magnetic heading. The Kalman filter will

automatically adjust for changing dynamic conditions without any external user input.

Hence, it can effectively function as the inertial measurement unit (IMU) for the aircraft.

Figure I.6 Crossbow Technology’s AHRS400CA-100

The AHRS400CA-100 can be operated in 3 sensor modes and the data available

from each mode is shown in Table I.1. In all three sensor modes, the AHRS can measure

linear acceleration up to ±2g and angular velocity up to ±100°/sec. For this project, the

AHRS is operated in the Angle Mode in order to utilize its Kalman filtering capabilities.

 8

In addition, data collection can be done in either continuous update or polled

mode. A detailed comparison of data output rate in both modes was made in [4]. It was

concluded that in continuous/angle mode, the AHRS outputs data at an alternating

frequency of 69.7 Hz and 61.3 Hz, while in the polled mode the AHRS could not respond

fast enough when polled at a fixed rate of 30 Hz. As such, the continuous mode was used

in this project to take advantage of the higher data rate subject to an implementation that

would accommodate a varying data rate.

The output data from the AHRS400CA-100 is provided in both digital and analog

formats via a standard female DB-15 connector. The digital data is serially output via RS-

232 interface at 38,400 bps and is the method used for reading data in this project. The

data packet format and output data interpretation will be described in Section II when the

data interface implementation between Crossbow AHRS and onboard computer is

presented.

Angle Mode Scaled Sensor Mode Voltage Mode

Header (0xFF) Header (0xFF) Header (0xFF)

Roll Angle Roll Angular Rate Roll Gyro Voltage

Pitch Angle Pitch Angular Rate Pitch Gyro Voltage

Heading Angle Yaw Angular Rate Yaw Gyro Voltage

Roll Angular Rate X-Axis Acceleration X-Axis Acceleration Voltage

Pitch Angular Rate Y-Axis Acceleration Y-Axis Acceleration Voltage

Yaw Angular Rate Z-Axis Acceleration Z-Axis Acceleration Voltage

X-Axis Acceleration X-Axis Magnetic Field X-Axis Mag Sensor Voltage

Y-Axis Acceleration Y-Axis Magnetic Field Y-Axis Mag Sensor Voltage

Z-Axis Acceleration Z-Axis Magnetic Field Z-Axis Mag Sensor Voltage

X-Axis Magnetic Field Temp Sensor Voltage Temp Sensor Voltage

Y-Axis Magnetic Field Time Time

Z-Axis Magnetic Field Checksum Checksum

Temp Sensor Voltage

Time

Checksum

Table I.1 Serial Outputs From AHRS400CA-100 In Various Sensor Modes

 9

2. Global Positioning System Receiver

The GPS receiver used on the NPS Frog UAV is the Trimble Ag132 DGPS

receiver as shown in Figure I.7. The Ag132 DGPS is a 12 channel L-band differential

correction receiver that provides sub-meter accuracy. It combines a GPS receiver, a

beacon differential receiver, and a satellite differential receiver in the same housing.

These receivers use a combined antenna with a single antenna cable. The Ag132 is

configured with two programmable RS-232 serial ports and outputs GPS data at 1, 5 or

10 Hz with latency of 10 msec in RS-232 serial ASCII format at baud rates up to 38,400

bps. All outputs conform to the National Marine Electronics Association (NMEA)-0183

data protocol. Among the various sentences in the GPS data stream shown in Table I.2,

only some information in the $GPGGA and the $GPRMC sentences is relevant to our

application and is extracted for use by the flight controller and guidance algorithm.

Figure I.7 Trimble Ag132 GPS Antenna and Receiver Mounted on FROG

Message Contents
GGA Time, position, and fix related data

GLL Position fix, time of position fix, and status

GRS GPS Range Residuals

GSA GPS position fix mode, SVs used for navigation and DOP values

GST GPS Pseudorange Noise Statistics

GSV Number of SVs visible, PRN numbers, elevation, azimuth and SNR values

MSS Signal strength, signal-to-noise ratio, beacon frequency, and beacon bit rate

RMC UTC time, status, latitude, longitude, speed over ground (SOG), date, and
magnetic variation of the position fix

 10

VTG Actual track made good and speed over ground

XTE Message Cross-track error

ZDA UTC time, day, month, and year, local zone number and local zone minutes.

PTNLDG Proprietary Beacon channel strength, channel SNR, channel frequency,
channel bit rate, channel number, channel tracking status, RTCM source, and
channel performance indicator

PTNLEV Proprietary Time, event number, and event line state for time-tagging change of state on a
event input line.

PTNL,GGK Time, Position, Position Type and DOP Values

PTNLID Proprietary Receiver machine ID, product ID, major and minor release numbers, and
firmware release date.

PTNLSM Reference Station Number ID and the contents of the Special Message included
in valid RTCM Type 16 records.

Table I.2 Trimble Ag132 Messages

3. Freewave® Radio Modems

The communication link between the UAV and the Host Computer on the ground

is implemented with the DGR-115 RS-232 wireless modem shown in Figure I.8 from

FreeWave® Technologies, Inc. The FreeWave modem uses frequency hopping spread

spectrum technology and has a power output of 1/3 Watt. It is capable of communicating

over a line of sight range of up to 20 miles, and supports data transmission at baud rates

from 1200 bps to 115.2 Kbps. In addition, the FreeWave transceiver can operate in either

point to point or point to multipoint modes, opening up the possibility to control of more

than one aircraft in future. Its main specifications are shown in Table I.3

Figure I.8 DGR-115 Wireless Serial Modem (left) Mounted on UAV (right)

 11

ITEM SPECIFICATION
Range 20 Miles
RS232 Data Throughput 1200 Baud to 115.2 Kbaud
RS232 Interface Asynchronous, Full duplex
System Gain 135 dB

Minimum Receiver Decode Level -110 dBm @ 10-4 raw BER
-108 dBm @ 10-6 raw BER

Operating Frequency 902 - 928 MHz
Modulation Type Spread Spectrum, GFSK
Spreading Code Frequency Hopping
Hop Patterns 15 (User Selectable)
Output Power 1/3 Watt (+25 dBm)
Error Detection 32 Bit CRC With Packet Retransmit
Antenna 3 Inch Whip Provided

Non-standard SMA Connector Allows Use Of
External Directional or Omni- Directional
Antennas.

Power Requirements 10.5 - 18.0 VDC (Centre Positive)
Power Consumption 180 mA Transmit

100 mA Receive
120 mA Average

Connector RS232
9 Pin Female, 9 Pin Male to 9 Pin Female
Straight Through Cable Provided

Unit Address Unique, Factory Preset
Operating Modes Point to Point, Point to Multipoint

Store and Forward Repeater
Operating Environment -10° C to +50° C

Table I.3 Freewave® Radio Modem Specifications

4. Differential Pressure Sensor

A differential pressure sensor shown in Figure I.9 (Model: 144LU04DPC) from

Sensortechnics was also installed in the FROG UAV to measure airspeed data. It is

capable of measuring differential pressures up to 5 inches of water and outputs 0-5V

depending on the pressure difference between the internal static pressure and that on the

pitot probe mounted on the nose-fairing of the UAV shown in Figure I.10.

 12

Figure I.9 Differential Pressure Transducer

Figure I.10 Pitot Probe on UAV

Diff Ports

Air Pressure
Probe

 13

II. RAPID PROTOTYPING OF NEW CONTROL SETUP

A. PROPOSED CONTROL SETUP

To overcome the constraints in the original setup for the conduct of the

autonomous UAV cluster C2 research, a new control setup shown in Figure II.1 was

conceived. In this new setup, the onboard PC-104 computer would receive data from all

airborne sensors and execute the flight control algorithm to stabilize and steer the aircraft.

This reduces the latency time between data measurement to its use in computation, and to

control commands output significantly. It also eliminates the need for flight data to be

sampled at a high rate of 100Hz or more and transmitted to the computer on the ground

for flight control computation, thereby reducing the bandwidth requirements on the serial

modem tremendously. Instead, the onboard computer now only needs to download flight

data to the host computer on the ground at a much lower 30 Hz to 40 Hz purely for data

recording purposes, to still get fairly representative flight information for flight re-

construction or parameter identification. As and when required, guidance commands for

the autopilot can be sent to the flight control computer through the wireless serial modem

link. This occurs at a much lower data rate.

PC-104
Computer

Control Surface Position Feedback

 • Manual Piloting
 • Way-Pt Uplink
 • Flight Data Logging

Host
Computer

Futaba

Emergency
Pilot Link

Futaba®

Rcvr

Control
Surfaces

Modem
IMU

PWM
Switch

GPS

Modem

Air
Data

Host-Target
2-way Link

Figure II.1 New Control Setup

 14

In an emergency, the onboard computer must quickly hand over the control

authority of the aircraft back to the Futaba® remote control so that the pilot can regain

control of the aircraft and pilot it from the ground. This is implemented with a PWM

Switch that by default takes command from the Futaba® remote control unless the pilot

grants control of the aircraft to the onboard computer. When the Futaba® remote control

commands are modified to be sent through the serial modem, its range would increase

correspondingly with the computer control to 20 miles, and this would allow future flight

control research work at NPS to be conducted beyond the current 1.5 mile operating

range.

The main constraint in the new setup is that the onboard computer must be

powerful enough, and the data integration processes optimized sufficiently, to implement

control at an acceptable rate. This consideration is constantly being monitored throughout

this project and incorporated into the software drivers that are written to integrate sensor

data.

B. THE RAPID PROTOTYPING SYSTEM

Implementation of the control setup was expedited using rapid prototyping

techniques. A rapid prototyping system can be viewed as the complete set of hardware

and software tools to implement and test the UAV’s flight controller within a reasonably

short period of development time. In this project, a deliberate decision was taken to shift

from the previously used RealSim® Rapid Prototyping System by WindRiver, Inc, to the

newly acquired xPC Rapid Prototyping System by The Mathworks, Inc, as the product

and technical support for the former is gradually being phased out. To elaborate on the

various components of the rapid prototyping system, it would be sub-divided into several

sections– namely, the xPC Target rapid prototyping environment, the airborne computer,

the data I/O hardware architecture.

 15

1. xPC Target Rapid Prototyping Package

xPC Target is a PC solution for prototyping, testing, and deploying real-time

systems marketed by The Mathworks, Inc. The rapid prototyping process makes use of

many toolboxes that are available with the popular Matlab simulation software to support

implementation of control system simulation, data acquisition and real-time control.

Computation and signal processing algorithms are first designed and tested as Simulink

simulation models. xPC Target then makes use of the Real-Time Workshop toolbox to

convert the Simulink models into C-code, build real-time applications that can executed

on any standard PC hardware and download into an assigned ‘Target’ PC. To interface

the real-time application with hardware, users can make use of some of the I/O device

drivers that comes with xPC Target to support commonly available I/O boards or develop

their own device driver blocks by writing C-Mex S-functions in MATLAB.

Figure II.2 xPC Target Setup

In a typical setup shown in Figure II.2, a Host computer makes use of Real-Time

Workshop to build a real-time application based on Simulink models, I/O driver blocks

and C-code S-functions created in MATLAB and downloads it to a Target computer via

RS232 or TCP/IP using the xPC Target environment. The application in the target

computer can be started, stopped, or its model parameters can be changed (called ‘tuned’

in xPC), and run-time data can be observed or recorded on the Host or Target PC. The

 16

Target PC can be a common desktop PC, a PC/104, CompactPCI, industrial PC or

Pentium Single Board Computer regardless of operating system because xPC uses its

own real-time operating kernel. The Target PC is diskette bootable but can be made to

boot-up internally and initiate the ‘burnt in’ application whenever it is reset if the optional

xPC Target Embedded Option is installed.

The advantage of the xPC rapid prototyping system in this project is that it

contains all the tools required to provide an integrated environment for control system

design, software engineering, data acquisition and testing before it is finally implemented

on the intended airborne computer. The software suite consists of the MATLAB package,

Control System Toolbox, Simulink, Dials and Gauges Blockset, Real-Time Workshop

and the xPC Target operating system. MATLAB and Control System Toolbox provide

the capability to design, analysis and implement the flight controller. Simulink provides a

graphical user interface (GUI) for construction of the controller, simulation and

visualization. The Dials and Gauges Blockset contains a library of pre-designed blocks to

facilitate design of a GUI for system parameters to be changed or values of variables to

be displayed as the application is running. The Real-Time Workshop is an automatic code

generator for the Simulink models. It converts the Simulink model and the S-Functions

within it into C code which can then be compiled to create a stand-alone real-time

executable program. Real-Time Workshop also schedules all the tasks to be carried out

when the application is activated for the xPC operating system. Once compiled, the

standalone executable code is suitable for the test-bed environment or for use in the

embedded real-time system. The xPC real-time kernel sets up the environment in the

Target PC to execute the application and maintain communications with the Host to

allow parameter tuning as the application execution is in progress.

2. Host Computer

The Host Computer used in this project is a Pentium III notebook PC running

Matlab and all the relevant rapid prototyping software toolboxes mentioned in the

previous section and is situated on the ground. It has a standard serial COM1 port for the

 17

Host-Target link implementation and a Ethernet network card for TCP/IP link-up with the

Target PC which serves as a useful alternate link during development.

3. Target Airborne Computer

The Target PC installed on the NPS Frog UAV was re-configured from the

AC-104 computer assembled by WindRiver Systems Inc. The AC-104 computer, shown

previously in Figure I.3 was originally developed for WindRiver System’s own RealSim®

rapid prototyping system. The AC-104 uses a mixture of a PC/104 compact computer I/O

card, Industrial Pack (IP) I/O modules and a small computer motherboard. It consists of

an Intel Pentium MMX 233 MHz processor on an Advantech PCM-5862 motherboard

configured with 16 MB of EDO RAM and a 4 MB flash disk for non-volatile storage.

Basic I/O is provided by a PCI–SVGA display controller, two RS-232/422/485 serial

ports, an enhanced parallel port, keyboard controller and a PCI based 10Base-T Ethernet

connection.

Figure II.3 New Miniature Airborne Computer

In the new miniature airborne computer shown in Figure II.3, the Diamond

Systems Ruby-MM 12 bit D/A converter, the SBS GreenSprings Modular I/O Industry

Pack IP-68322 data acquisition hardware control module and the IP-Serial board in the

original setup were all removed. Only the Analogic AIM16 16-bit A/D converter, Flash

Disk RAM card and motherboard were retained. A 3.5-inch floppy drive was added to

 18

boot-up the xPC Target kernel and set of Quartz-MM-5 and Quartz-MM-10 counter/timer

I/O boards by Diamond Systems was incorporated to get PWM signal generation and

capture capability. The originally disabled COM3 and COM4 were also recovered with

appropriate jumper settings on the motherboard and IRQ re-assignment. In addition, a set

of switching power converters was built into the casing of the new computer to convert

DC power from the aircraft’s batteries to various voltages for the computer, cooling fan

and onboard instruments. The resulting miniature computer fits snugly in the front

compartment of the FROG UAV to give it additional forward center of gravity.

Figure II.4 Location of Miniature Computer on UAV

Signal I/O interface between the airborne target computer, the servos that drive

the aircraft control surfaces and control surface position sensing potentiometers connect

to the top of the computer as shown in Figure II.5. Within the target computer, the signal

interface specifications for the I/O boards largely fall into three categories listed below

and are tabulated for easy reference in the corresponding Appendices.

a. I/O Address – Appendix B.1

b. I/O Board Pin Out Connection and Usage – Appendix B.2

c. Interrupt Routine (IRQ) Assignment – Appendix B.3

Computer

 19

Figure II.5 Top Panel Layout of New Computer

C. SOFTWARE INTERFACE DRIVERS

In order for the airborne computer to compile data from onboard instruments,

software interface drivers had to be written. A significant amount of effort was expended

in this project to write software interface drivers that will read in and decode data output

by the IMU and GPS receiver. This was because existing xPC serial data input block can

only read RS-232 messages with fixed sentence structure (i.e. in 32-bit float or 16-bit

integer format and each message must end with null character) or binary data stream with

fixed number of characters without the capability to identify a header byte or handle

varying number of bytes in messages. On the other hand, to work with the IMU and GPS,

the interface drivers must be capable of searching for appropriate header byte or header

string in a continuous stream of RS-232 data while performing checksum computation in

real-time to validate the data and applying appropriate formula to decode the incoming

data. Therefore, instrument specific software interface drivers had to be written. Details

of the driver implementation for the case of the CrossBow IMU and Ag132 GPS is

discussed next.

VGA

E-Net Keyboard A/D In

PWM
In

PWM
Out

Floppy Drive

Air Intake

E-Net

IMU

Spare

GPS

Serial

 20

1. IMU Data Interface

In the Crossbow AHRS400CA-100, the digital data representing each

measurement is sent as a 16-bit number (two bytes). The data is sent in ‘Big Endien’

format, i.e. MSB first then LSB. In Angle Mode, the data generally represents a quantity

that can be positive or negative and is sent as a 16-bit signed integer in 2's complement

format. Only the timer information and temperature sensor voltage are sent as unsigned

integers. Each data packet begins with a header byte (255) and ends with a checksum.

Hence, for the Angle Mode used in this project, each message consists of 30 bytes

inclusive of the header byte, 14 data values and the checksum as shown in Table II.1.

a. IMU Data Receive Implementation
Several characteristics peculiar to the Crossbow AHRS message data

structure shown in Table II.1 dictated the way the software driver receiving serial data

from Crossbow had to be written. First, the message rate (i.e. number of message

Crossbow outputs) in Continuous Data Collection Mode is not constant. It was measured

to be fluctuating between 69.7 Hz and 61.3 Hz in [4]. This precludes the use of a standard

message retrieval rate (e.g. fixed at 65 read per second) by the airborne computer if we

intend to read and utilize every piece of data output from the instrument. Second, the

header byte FF will not be the only FF byte in the each data packet because FF bytes can

occur in the message body. Therefore, the receiving software driver must count the bytes

received from the serial port and use the checksum to determine if a particular FF byte is

a header or just another byte in the body of the message. The implemented Crossbow data

receive and decode Simulink block diagram is shown in Figure II.6.

1
Data

Length

Enable

Done

Data

xbow RS232 Receive
COM4

xbow Receive

T arget Scope
Id: 2

Scope (xPC) 1

RS-232
Mainboard

Setup

RS232 1

data XBow Message

Data Decoder

1

Constant1

30

Constant

Figure II.6 Crossbow AHRS Data Receive and Decoding Block Diagram

 21

The ‘Xbow Receive’ block calls the data receive driver xbowrcv1p3.c in

Appendix C. xbowrcv1p3.c uses a soft-buffer to collect every byte received by the COM

port serial buffer and progressively check every byte in the soft-buffer for a FF byte.

Upon locating each FF byte (possible message header), the routine computes the

checksum of all data bytes (Byte 2 to Byte 29 in Angle Mode) to assess if the computed

checksum tallies with the transmitted checksum byte (Byte 30 in Angle Mode case). If

the checksum does not tally, that FF byte is not a header and the routines goes in search

of the next FF byte. If the checksum tallies, the routine outputs the full message (Header

byte + 28 data bytes + checksum byte in Angle Mode case) and shift unused bytes to the

front of the soft-buffer for processing at the next time-step. If there is inadequate data to

form a message (this occurs if the sampling interval is much smaller than data rate), the

previous message is returned during each code execution time-step. If on the other hand,

the sampling interval is longer than data rate, and the data in soft-buffer exceeds 100

bytes (i.e. about 3 messages), the soft-buffer is flushed to allow new incoming bytes to

reach the front of soft-buffer for processing. This will assure the ‘freshness’ of data. As

such, the implemented driver is able to collect every useful byte of data and operates

independently of the message rate from the IMU.

Byte VG Mode Scaled Sensor Mode Voltage Mode

0 Header (255) Header (255) Header (255)

1 Roll Angle (MSB) Roll Angular Rate (MSB) Roll Gyro Voltage (MSB)

2 Roll Angle (LSB) Roll Angular Rate (LSB) Roll Gyro Voltage (LSB)

3 Pitch Angle (MSB) Pitch Angular Rate (MSB) Pitch Gyro Voltage (MSB)

4 Pitch Angle (LSB) Pitch Angular Rate (LSB) Pitch Gyro Voltage (LSB)

5 Heading Angle (MSB) Yaw Angular Rate (MSB) Yaw Gyro Voltage (MSB)

6 Heading Angle (LSB) Yaw Angular Rate (LSB) Yaw Gyro Voltage (LSB)

7 Roll Angular Rate (MSB) X-Axis Acceleration (MSB) X-Axis Accel Voltage (MSB)

8 Roll Angular Rate (LSB) X-Axis Acceleration (LSB) X-Axis Accel Voltage (LSB)

9 Pitch Angular Rate (MSB) Y-Axis Acceleration (MSB) Y-Axis Accel Voltage (MSB)

10 Pitch Angular Rate (LSB) Y-Axis Acceleration (LSB) Y-Axis Accel Voltage (LSB)

11 Yaw Angular Rate (MSB) Z-Axis Acceleration (MSB) Z-Axis Accel Voltage (MSB)

12 Yaw Angular Rate (LSB) Z-Axis Acceleration (LSB) Z-Axis Accel Voltage (LSB)

13 X-Ax is Acceleration (MSB) X-Axis Magnetic Field (MSB) X-Axis Mag Voltage (MSB)

 22

14 X-Axis Acceleration (LSB) X-Axis Magnetic Field (LSB) X-Axis Mag Voltage (LSB)

15 Y-Axis Acceleration (MSB) Y-Axis Magnetic Field (MSB) Y-Axis Mag Voltage (MSB)

16 Y-Axis Acceleration (LSB) Y-Axis Magnetic Field (LSB) Y-Axis Mag Voltage (LSB)

17 Z-Axis Acceleration (MSB) Z-Axis Magnetic Field (MSB) Z-Axis Mag Voltage (MSB)

18 Z-Axis Acceleration (LSB) Z-Axis Magnetic Field (LSB) Z-Axis Mag Voltage (LSB)

19 X-Axis Magnetic Field (MSB) Temp Sensor Voltage (MSB) Temp Sensor Voltage (MSB)

20 X-Axis Magnetic Field (LSB) Temp Sensor Voltage (LSB) Temp Sensor Voltage (LSB)

21 Y-Axis Magnetic Field (MSB) Time (MSB) Time (MSB)

22 Y-Axis Magnetic Field (LSB) Time (LSB) Time (LSB)

23 Z-Axis Magnetic Field (MSB) Checksum Checksum

24 Z-Axis Magnetic Field (LSB)

25 Temp Sensor Voltage (MSB)

26 Temp Sensor Voltage (LSB)

27 Time (MSB)

28 Time (LSB)

29 Checksum

Table II.1 Serial Data Structure From Crossbow AHRS400CA-100

b. Decoding Crossbow Data
The decoding routine simply takes in the float value of consecutive two

bytes after the header byte, multiplies the first byte of each pair by 256, adds it to the

second byte to obtain the numerical value for data items transmitted in 2’s complements.

Each set of data (e.g. angles, rates, acceleration and magnetic field) is then scaled

according to Simulink implementation structure shown in Figure II.7. The factors AR,

GR and MR are specific to each Crossbow AHRS and are given in the factory calibration

data of the instrument. An example of the decoded data for Euler angles and rates is

presented in Figure II.8 when the Crossbow IMU was rotated in the roll, pitch and yaw

axis sequentially by approximately 80° in each direction to check the validity of the

decoded data.

 23

1
XBow Message

In1
In2 Out1

Yaw Rate

In1
In2 Out1

Rol l Rate

In1
In2 Out1

Rol l Angle

In1
In2 Out1

Pitch Rate

In1
In2 Out1

Pitch Angle

In1
In2 Out1

Hz

In1
In2 Out1

Hy

In1
In2 Out1

Hx

In1
In2 Out1

Hdg Angle

emu(double)

Data Type Conversion

In1
In2 Out1

Acc Z

In1
In2 Out1

Acc Y

In1
In2 Out1

Acc X1
data

Figure II.7 Simulink Block to Decode Crossbow Data

Figure II.8 Decoded Euler Angle and Rates from Crossbow

Scaling:

Angle = data*(180°)/2^15

Rate = data*(AR*1.5)/2^15

Accel = data*(GR * 1.5)/2^15

Mag = data*(MR*1.5)/2^15

 24

2. GPS Data Interface

The Ag132 receives GPS messages in NMEA-0183 format. The messages are

essentially strings of comma-delimited text shown in Figure II.9 below. Each NMEA

message includes a message ID to distinguish the message from other NMEA messages

in the data stream. The actual data included in NMEA-0183 messages is placed in fields.

Each NMEA message contains different number of fields, and each field is preceded by a

comma character. The messages include a checksum value which is useful for checking

the integrity of the data included in the message. The checksum is the 8-bit exclusive OR

of all the characters in the message, between the ‘$’ and ‘*’ delimiters.

Figure II.9 NMEA-0183 Message Structure

a. Receiving GPS Message Strings
The manner in which GPS messages are received the airborne computer is

shown in Figure II.10 . The GPS Receive block executes the gpsrcv.c software driver in

Appendix C to read every byte of the GPS data into a storage and output buffer system

(similar to that describe for the Crossbow IMU so that no data byte is lost when sampling

is done at data rates higher than the incoming GPS data), evaluates the 5-byte header

following each ‘$’ character, identifies if a GPGGA or GPRMC message has been

received and returns a Header Index to identify the type of message. It also searches

through the message to look for the end of message delimiter bytes (0x0D, 0x0A) which

 25

mark the end of each message and outputs all the bytes between the header string and

delimiter bytes.

2
Header ind

1
DataLength

Enable

Done

DataGPS reciever block
COM2

GPS Receive

1

Constant1

-C-
Constant

(double)

2double1

(double)

2double

Figure II.10 GPS Message Receive Block Diagram

b. Decoding the GPS Messages
Message decoding is done by two blocks following the GPS_receive

model as shown in Figure II.11. The GCA and RMC blocks are enabled to execute the

gpgca.c and gprmc.c routines in Appendix C when the Header Index from the

GPS_receive model matches the message type each block is assigned to decode. Since

each data field is separated by the comma character, the routine extracts each field of

useful data from the received binary data sent by the GPS_receive model based on the

expected format and contents of fields for the GPGGA and GPRMC messages as shown

in Table II.2 and Table II.3 respectively.

2
GPRMC

1
GPGGA

==

Relational
Operator1

==

Relational
Operator

In1 RMC

RMC

In1 GGA

GGA

2

Constant1

1

Constant2
Header Type

1
GPS data

Figure II.11 GPS Message Decoding Block Diagram

Field Description
1 UTC of position fix in HHMMSS.SS format
2 Latitude in DD MM,MMMM format (0-7 decimal places)

 26

3 Direction of latitude
N: North
S: South

4 Longitude in DDD MM,MMMM format (0-7 decimal places)
5 Direction of longitude:

E: East
W: West

6 GPS Quality indicator
0: fix not valid
1: GPS fix
2: DGPS fix

7 Number of SVs in use, 00-12
8 HDOP
9 Antenna height, MSL reference
10 M’ indicates that the altitude is in meters.
11 Geoidal separation
12 ‘M’ indicates that the geoidal separation is in meters
13 Age of differential GPS data record, Type 1. Null when DGPS not used
14 Base station ID, 0000-1023

Table II.2 GGA Message Fields

Field Description
1 Time: UTC time of the position fix in hhmmss.ss format
2 Status

A: Valid
V: Navigation Receiver Warning (V is output whenever the
Receiver suspects something is wrong)

3 Latitude coordinate
(the number of decimal places, 0–7, is programmable and determined by the numeric
precision selected in TSIP Talker for a RMC message)

4 Latitude direction: N = North, S = South
5 Longitude coordinate (the number of decimal places, 0–7, is

programmable and determined by the numeric precision selected in TSIP Talker for a
RMC message)

6 Longitude direction
W: West
E: East

7 Speed Over Ground (SOG) in knots (0–3 decimal places)
8 Track Made Good, True, in degrees
9 Date in dd/mm/yy format
10 Magnetic Variation in degrees
11 Direction of magnetic variation

E: Easterly variation from True course (subtracts from True
course)
W: Westerly variation from True course (adds to True course)

12 Mode Indication
A: Autonomous
D: Differential
N: Data not valid

Table II.3 RMC Message Fields

 27

D. COMBINED I/O TEST

The Simulink block diagram for the combined I/O test involving GPS

data, IMU data, PWM generation, PWM capture and host-target communication

via serial modem is shown in Figure II.12. It is driven by user inputs from the

display screen in Figure II.13 created using Dials & Gauges. The PWM signal

generated by the computer (shown in Figure II.14) was designed to emulate that

generated by the Futaba® remote control system which uses a pulse period of

approximately 14.25 milliseconds and a pulse width varying from around 0.9 to

2.2 milliseconds depending on the command input.

Figure II.12 Block Diagram For Combined Test

The computer takes only an average of 350 microsecond to compile the GPS,

IMU, A/D sensor data, output PWM signals, measure PWM signals and display results to

the VGA monitor at each time step. This execution time can further be reduced if display

PWM SIGNAL GENERATION CHECK

PWM SIGNAL CAPATURE CHECK

A/D SERVO VOLTAGE MEASURE

CROSSBOW DATA RECEIVE

GPS DATA RECEIVE

16
Out1

15
Out4

14
Data

13
adreturn

12
PWM_Period4

11
PWM_Pulse4

10
PWM_Period3

9
PWM_Pulse3

8
PWM_Period2

7
PWM_Pulse2

6
PWM_Period1

5
PWM_Pulse1

4
PWM _Out4

3
PWM_Out3

2
PWM_Out2

1
PWM_Out1

data XBow Message

Subsystem1

T arget Scope
Id: 3

Scope (xPC) 3Target Scope
Id: 2

Scope (xPC) 2

Target Scope
Id: 4

Scope (xPC) 1

T arget Scope
Id: 1

Scope (xPC)

QUARTZ-MM-5
Diamond Sys
PWM capture

3 (f)

4 (dc)

QUARTZ-MM-5 4

QUARTZ-MM-5
Diamond Sys

PWM
1 (dc)

QUARTZ-MM-5 1

QUART Z-MM-10
Diamond Sys
PWM capture

7 (f)

8 (dc)

QUART Z-MM-10 5

QUART Z-MM-10
Diamond Sys
PWM capture

3 (f)

4 (dc)

QUART Z-MM-10 4

QUARTZ-MM-10
Diamond Sys
PWM capture

5 (f)

6 (dc)

QUARTZ-MM-10 3

QUARTZ-MM-10
Diamond Sys

PWM
2 (dc)

QUARTZ-MM-10 2

QUARTZ-MM-10
Diamond Sys

PWM
5 (dc)

QUARTZ-MM-10 1

QUARTZ-MM-10
Diamond Sys

PWM
1 (dc)

QUARTZ-MM-10

-K-

Pulse_Width4
-K-

Pulse_Width3

-K-

Pulse_Width2

-K-

Pulse_Width1

Product7

Product6

Product5

Product4

Product3

Product2

Product1

Product

-K-

Period4
-K-

Period3

-K-

Period2

-K-

Period1

1

PWM_dc_disp4

1

PWM_dc_disp3

1

PWM_dc_disp2

1

PWM_dc_disp1

1

PWM_dc4

1

PWM_dc3

1

PWM_dc2

1

PWM_dc1

RS-232
Mainboard

Setup

IMU RS232

RS-232
Mainboard

Setup

GPS RS232

Data

Header ind

DAQ

Data

CrossBow Data

1

Constant4

1

Constant3

1

Constant2

1

Constant1

-K-

Base Freq4
-K-

Base Freq3

-K-

Base Freq2

-K-

Base Freq1

AIM16
Analogic

Analog Input

1
2
3
4

AIM16

GPS data

Header Ty pe

GPGGA

GPRMC

$GPS decoder

 28

of data on the xPC scope is removed. Hence, the data collection and processing time on

the airborne computer has improved significantly over the original setup where data was

updated only at 25 Hz.

Figure II.13 Combined Test User Interface Screen

Figure II.14 PWM Signal Generated by Computer Matches Command

 29

III. FLIGHT CONTROLLER DESIGN

For the controller design effort, a six degrees-of-freedom (6-DOF) model of the

NPS FROG UAV was first developed in Simulink based on available flight

characteristics data collected in [6]. The flight controller was then designed using

classical control inner-outer-loop approach using the dynamic model of the FROG UAV

around the trimmed flight condition and adjusted for non-linearity with gain-scheduling

using dynamic pressure as the scheduling parameter. The inner-loop-outer-loop structure

was chosen as the first controller to be implemented because its structure made it easier

to conduct checks on the aircraft. Another controller was designed using the Integral

Linear Quadratic Regulator (Linear LQR) Synthesis method described in [8] to serve as

performance comparison.

A. 6DOF AIRCRAFT MODEL DEVELOPMENT

The derivation of equations of motion for a 6-DOF aircraft model can be divided

into 2 main parts. The first part is the formulation of equations of motion for the aircraft,

treated as a rigid body, in space. These dynamics are typically common for any rigid

body. The second part is the computation of aerodynamic, gravitational and thrust forces

on the aircraft. These forces, except for gravitational, are specific to each aircraft and

depend directly on its stability and control derivatives as well as on engine performance.

1. Equations of Motions

The equations of motion for the linear dynamics and angular dynamics of the

aircraft is developed as follows:

a. Linear Dynamics Equations

The equations for linear motion are governed by Newton’s Second Law,

F m a= , expressed in the inertial frame { }U . However, aircraft velocities and attitude

angles are usually measured with respect to the aircraft’s body axis coordinate system

{ }B . Linear forces and accelerations are also typically expressed in { }B . The origin of

 30

the body axis (BO) is taken to coincide with the aircraft center of gravity (c.g.), hence the

position of aircraft c.g. with respect to inertial axis is denoted U
BOP and its velocity is

given by

U U
BO BOv P (III.1)

Pre-multiplying by the rotation matrix from { }U to { }B gives

B U B U
U BO U BOR v R P (III.2)

where the rotation matrix B
U R is given by

cos cos sin cos sin
cos sin sin sin cos sin sin sin cos cos cos sin
cos sin cos sin sin sin sin cos cos sin cos cos

B
U R

Ψ Θ Ψ Θ − Θ
 = Ψ Θ Φ − Ψ Φ Ψ Θ Φ + Ψ Φ Θ Φ

Ψ Θ Φ + Ψ Φ Ψ Θ Φ − Ψ Φ Θ Φ

 (III.3)

or equivalently as

B B
BO BOv P= (III.4)

The total derivative of a vector A in a rotating coordinate system with angular velocity

ω , is given by Coriolis’ theorem

d

dt
A A Aω= + × (III.5)

Hence, the rigid body’s linear acceleration is given by

B B B
BO BO B BO

dv v v
dt

ω Β= + × (III.6)

Newton’s 2nd law applied to the aircraft c.g. can then written as (III.7) resolved in inertial

frame or as (III.8) resolved in body axes.

U U
BO

U
BO

F m a

m v

=

=
 (III.7)

B B u
u BO
B

BO

F m R v

m v

=

=
 (III.8)

 31

Finally, the equation to be modeled is given by (III.9) after incorporating (III.6) into

(III.8).

B B B B
BO B BO

d

dt
mF v vω = + ×

 (III.9)

b. Angular Dynamics Equations
The angular equations of motion are derived using Euler’s law for

conservation of angular momentum in the inertial frame where U
BON denotes moment

imparted to the rigid body and U
BOL denotes the rate of change of angular momentum.

u u
BO BON L= (III.10)

Again using the rotation matrix to body axes and applying Coriolis’ Theorem

B B u
BO u BOL R N= (III.11)

B B B B
BO BO B BO

dL L L
dt

ω= + × (III.12)

where the angular momentum term B
BOL is defined as the product of the inertia

tensor and the body’s angular velocity plus the inertia tensor of the spinning rotor on the

aircraft and the rotor’s angular velocity all with respect to body axes.

 B B B
BO B B R RL I Iω ω+ (III.13)

Substituting (III.13) into (III.12) gives

() ()B B B B B B
BO B B R R B B B R R

dL I I I I
dt

ω ω ω ω ω= + + × + (III.14)

In this project, B
R RI ω is also neglected. If we further assume that ,B RI I and

B
Rω are constant, (III.15) results.

()B B B B B
BO B B B B B R RN I I Iω ω ω ω= + × + (III.15)

 32

c. State Equations
In summary, the kinematics equations to be implemented in the rigid body

6DOF model is governed by (III.16) and is re-written in matrix form as (III.17).

()
()B B B

B BO B BO

B B B B B
B B B B B R B

dm v m vF dt
N I I I

ω

ω ω ω ω

 + × = + × +

 (III.16)

which can be re-arranged and implemented in linear state space form as

()1 1

B
B B

B B BO
BO

B B B B B
B B B B B R R B

Fvd v m
I I I I Ndt

ω

ω ω ω ω− −

− × + = − × + +

 (III.17)

2. Forces and Moments on Aircraft

In order to compute the BF and BN as required in (III.17), the total contribution

of forces and moments exerted on the aircraft due to aerodynamic, propulsion and

gravitational effects is computed using the expression (III.18).

 Pr Pr

Pr

B B BB
Aero op op

B B B
Aero op

F F FF
N N N

 + +
=

+
 (III.18)

a. Aerodynamic Forces and Moments
The aerodynamics force and moment terms are determined using a first-

order Taylor series expansion around the aircraft trimmed operating point. Each term in

the series is a partial derivative of BF and BN with respect to the aerodynamic variables

, , , , ,
T

u

V
p q rα β i.e.

' '
' '

0Aero x x
F F x F x F Fδ δ δ ∆= + + ∆ + (III.19)

' '
' '

0Aero x x
N N x N x N Nδ δ δ ∆= + + ∆ +

where

 33

' , , , , ,
2 2 2T T T T

u pb qc rb
x

V V V V
β α=

 (III.20)

' ,x β α = (III.21)

[], ,e r aδ δ δ∆ = (III.22)

The forces and moments generated by aerodynamic forces with respect to the

wind-axis as denoted in (III.23) and the rotation matrix B
w R defined in (III.24) can be

applied to obtained B
AF and B

AN .

0

' '
' '

w
A

w F
A

C C CF q S C x x
N x x

∂ ∂ ∂ = + + + ∆ ∂ ∂ ∂∆
 (III.23)

cos cos cos sin sin

sin cos 0

sin cos sin sin cos

B
w R

α β α β α

β β

α β α β α

−

−

 =

 (III.24)

The forces resulting from drag and lift are taken negative to obtain positive signed

forces in the Bx (i.e. forward) and Bz (i.e. down) directions.

w
Aero

D
Y
L

F
−

−

=

 and w
Aero

l
N m

n

=

 (III.25)

The rest of the quantities in (III.23) are defined as follows:

=
∂
∂

rqpU

rqpU

rqpU

rqpU

rqpU

rqpU

nnnnnn

mmmmmm

llllll

LLLLLL

YYYYYY

DDDDDD

CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC

x
C

αβ

αβ

αβ

αβ

αβ

αβ

'
 (III.26)

 34

=
∂
∂

0000
0000
0000
0000
0000
0000

'

αβ

αβ

αβ

αβ

αβ

αβ

nn

mm

ll

LL

YY

DD

CC
CC
CC
CC
CC
CC

x
C (III.27)

=
∆∂

∂

Tare

Tare

Tare

Tare

Tare

Tare

nnnn

mmmm

llll

LLLL

YYYY

DDDD

CCCC
CCCC
CCCC
CCCC
CCCC
CCCC

C

δδδδ

δδδδ

δδδδ

δδδδ

δδδδ

δδδδ

 (III.28)

0

0

0

0
0

0

0

D

Y

L
F

l

m

n

C
C
C

C
C
C
C

=

 (III.29)

 21
2 Tq Vρ= (III.30)

−

−

=

Sb
Sc

Sb
S

S
S

S

00000
00000
00000
00000
00000
00000

 (III.31)

 35

The aerodynamic variables 'x are typically not used as states in the

computation of B
AF and B

AN . Instead, the set of orthogonal linear velocities and angular

velocities in (III.32) which are easily measured on the aircraft is commonly used.

 []Tx u v w p q r= (III.32)

Transformation matrices 'M and 'M relating the chosen state vector x to the

aerodynamic variables 'x and 'x are defined as follows:

' '

' '

:
:

M x x
M x x

→

→

where

1 0 0 0 0 0

10 0 0 0 0

10 0 0 0 0

0 0 0 0 02

0 0 0 0 02

0 0 0 0 0 2

'

T

T

T

T

T

T

V

V

V

b
V

c
V

b
V

M

 =

 (III.33)

2

2

2

2

0 0 0 0 0

0 0 0 0
' T

T

c
V

b
V

M

=

 (III.34)

The complete expression for B
AF and B

AN can then be written as

0

' '
' '

0
0

BB
wA

B FB
A w

R C C CF q S C M x M x
N x xR

 ∂ ∂ ∂ = + + + ∆ ∂ ∂ ∂∆
 (III.35)

 36

b. Gravitational and Propulsive Forces and Moments
Gravity contributes forces on the rigid body but no moments since the

forces are assumed to act at the center of gravity. The gravitational forces acting on the

aircraft are obtained simply by pre-multiplying U
GravF by the appropriate rotation matrix

as follows:

0
0U

GravF
mg

 =

 (III.36)

then
0
0B B

Grav UF R
mg

 =

 (III.37)

Propulsive forces and moments are exerted in {B} axis and is simply computed

directly based on the expressions

Pr

x
B

op y

z

T
F T

T

 =

 (III.38)

 Pr

l
B

op m

n

T
N T

T

 =

 (III.39)

where Ti’s represents forces or moments due to propulsive thrust. Obviously, the

propulsive forces and moments depend on the engine installation and must be determined

for each aircraft individually. For the purpose of this project, the thrust forces in ,B By z

and moments are considered negligible and are ignored.

The complete forces and moments exerted on the aircraft are thus given by

(III.40). It is implemented in Simulink using block diagrams shown in Figure III.1 and

forms the input to the Equations of Motions portion of the 6DOF model.

0

' ' Pr
' '

0
0 0 0

B B BB
w Grav op

B FB
w

R F FC C CF q S C M x M x
N x xR

 ∂ ∂ ∂ = + + + ∆ + + ∂ ∂ ∂∆

(III.40)

 37

3. 6DOF Model of FROG UAV in Simulink

The Simulink models implementing Equations (III.17) and (III.40) are shown in

the following figures. This non-linear 6DOF model of the FROG UAV was then used to

design controllers for the aircraft.

1

12-State

u0

u0

Terminator

Forces X Y Z

Moments L M N

ub,v b,wb

p,q,r_rad

phi,theta,psi_rad

Px,Py ,Pz

Vt

alpha_rad

beta_rad

Ru2b

uv w_dot

6DOF

FROG_6DOF

m

12-state X Vt alpha beta

ddelta

Ru2b

uv w_dot

Froce_body

Moment_body

Compute
Forces & Moments

On FROG

1

Control Inputs

dVb/dt

-(w x Vb)

Ib
w x (Ib.w)

Inv(Ib)

phi ,theta,psi

L_dot

w

Linear Velocity Equations

Angular Velocity Equations Euler Angles Equations

Vb

Rb2u

Vu

Inertial Position Equations

6 Degrees of Freedom Equations of Motion for a Rigid Body
(Euler angles)

Wind Axis Quantities

9

uvw_dot

8

Ru2b

7

beta_rad

6

alpha_rad

5

Vt

4

Px,Py,Pz

3

phi,theta,psi_rad

2

p,q,r_rad

1

ub,vb,wb

1
s

x,y,z

f(u)

w/Vt

Cross
Product

f(u)

v/Vt
-C-

u,v,w_0

1
s

u,v,w

transport delay

transport delay

-C-

phi,theta,psi_0_rad

1
s

-C-

p,q,r_0_rad

1
s

Cross
Product

Vb x w

asin

asin

axis

Ru2b
from Euler Angles

Rb2u

-C-

Px,Py,Pz_0

Matrix
Multiply

Product

Inertia^(-1)

InvQ(Lambda).w

1/m

f(u)

Compute Vt

2

Moments
L
M
N

1

Forces
X
Y
Z

 38

grav_b

Aerodynamics Forces & Moments

Propulsion Forces & Moments

Gravitational Forces & Moments

Fgrav_b

T hrust_b

[Faero_b, Naero_b]

Computation of Forces and Moments Experienced by Aircraft

2

Moment_body

1

Froce_body

[0;0;0]

zero moments
due gravi ty

m

x Mass

Matrix
Multiply

K*u

dC_ddelta

K*u

dC_dXprime_dot

K*u

dC_dXprime

Xprimedot

f(u)

Xprime6

f(u)

Xprime5

f(u)

Xprime4

f(u)

Xprime3

f(u)

Xprime2

f(u)

Xprime1

x0

X0
(12-states)

V_wind

Wind_along_uvw

Ru2b.Gravity

Vector
T ransformmation

Thrust

qSbar

Rw2b

Subsystem

Selector1

Selector

1
Gain

K*u

Form Vector

m

Convert Rw2b

gravity_vec_wrt_u

Const

Co

Co Matrix

[S,c,b]

Aircraft
Dimensions

To

100%Thrust

4

uvw_dot

3

Ru2b

2

ddel ta

1

12-state X
Vt

alpha
beta

Figure III.1 Simulink Blocks Implementing 6DOF Model of FROG UAV

B. CLASSICAL CONTROLLER DESIGN

The first autopilot was designed based on classical inner/outer loop methodology

using the linearized model of the 6DOF FROG UAV developed in the previous section.

Actuator models representative of those driving surface actuators and throttle on the

aircraft with saturation limits imposed were included before the non-linear FROG model

to better emulate the actual hardware response. The procedure consists of evaluating the

stability of the feedback loop using root locus techniques, adding poles or zeros to shape

the system behavior in the compensator where needed, adjusting loop gains to achieve

desired gain and phase margins and verifying the response in each loop with step

commands of reasonable magnitude.

General requirements were to attain more than 6dB gain margin, at least 45°

phase margin and at least one decade bandwidth separation between inner and outer

 39

loops. The control channels were designed in the order: yaw damper, speed control,

altitude control followed by heading control

1. Yaw Damper Design

The yaw damper was designed first in order to prevent the aircraft from yawing

due to its lightly damped dutch-roll mode when it executes a longitudinal maneuver. This

loop was comparatively more difficult than the rest due to the presence of low damping

zeros near the origin and a unstable pole from the spiral mode. As shown in Figure III.2,

the root locus for the yaw damper near the origin would result in instability or very poor

damping due to the zeros at -0.0834±0.8298i with a simple gain feedback. Poles had to be

added at -0.5 and -0.3, with zeros at -0.5000±1.0000i to bring the locus quickly into the

stable region and give good damping as shown in the second root locus in Figure III.2.

For turn coordination, a computed rate bias of tan /c Tg Vφ was imposed as a

command to the PI controller in the yaw damper as described in [7] so that yaw damper

would not attempt to counter a commanded turn. The final structure of the yaw damper is

shown in Figure III.3. The airplane response responses to yaw rate disturbance inject of

0.2 rad/s and commanded yaw rate of 0.2 rad/s is presented in Figure III.4. The yaw rate

feedback method does not give extremely good responses due to the influence of the

unstable pole from the spiral mode.

Figure III.2 Root Locus of Yaw Damper With and Without Compensator

 40

Compute r for
turn rate coordination Yaw Stabilization

Yaw Damper

1
del_R

r disturbance
injection

U U(E)

r

UU(E)

Vt
tan

PID 5 -1

32.174

Constant

num(s)

s +s+1.252

Compensator

2
X

1
phi_cmd

Figure III.3 Yaw Damper Block Diagram

Figure III.4 Yaw Damper Responses

2. Speed Controller

A simple PI controller was implemented for speed control as shown in Figure

III.5. This was enough to give a phase margin 91.8° @ 0.42 rad/s with infinite gain

margin. Figure III.6 shows that the aircraft would be able to track a commanded 10 fps

change in airspeed in about 10 seconds.

 41

Speed Controller

2
qo/q

1
Del_T

U U(E)

Vt

88

Trim Vt

PID 0.03

MATLAB
Function

Compute qo/q

2
X

1
Del Vt cmd

Figure III.5 Speed Control Block Diagram

Figure III.6 Speed Controller Responses

3. Altitude Controller

Altitude control entails driving the elevator of the aircraft to pitch the aircraft up

or down in a climb or dive maneuver to execute desired altitude changes. To achieve this,

the aircraft must first be capable of pitch control. Hence, the pitch loop is often referred

to as the inner loop and is designed first. The pitch control loop consists of a PID

compensator on the pitch attitude error (θe) while the outer loop employed another PID

compensator with altitude error, which generates the pitch command for the inner loop.

Additionally, a compensator with pole at –25 and zero at –15 had to be inserted to delay

the system poles from crossing into the right half plane. This was because the

longitudinal modes originally had a real zero at s=19.4 and would result in an odd

number of poles and zeros to the right of the origin and the integrator pole from the outer

 42

loop PID would go right immediately otherwise. The resulting controller structure and its

root locus is presented in Figure III.7 and Figure III.8 respectively.

theta_cmd

Outer Loop - Altitude Control Inner Loop - Pitch Control

Altitude Controller

Alt

1
del_E

-C-

theta_trim

U U(E)

theta

pitch disturbance
injection

U U(E)

Pz

PID PID0.01

-1

s-15

s+25
Compensator1

2
X

1
Alt Cmd

Figure III.7 Altitude Controller Block Diagram

Figure III.8 Root Locus of Altitude Controller With Compensator

Figure III.9 shows the pitch control loop responses to commands from the outer

loop and its disturbance rejection property. In both cases, when 0.2 rad changes were

input, the elevator deflected a reasonable 0.1 rad or 5°. Figure III.10 shows the aircraft

model response to a commanded 10 ft change in altitude. The aircraft settled in its new

 43

altitude within 15 seconds. Elevator responded in negative direction as expected with

about 25% increase in throttle required to execute the climb. The bode plots for both

inner and outer loops are shown in Figure III.11.

Figure III.9 Pitch Control Loop Responses

Figure III.10 Altitude Control Loop Responses

Figure III.11 Altitude Control Inner and Outer Loops Bode Plots

 44

4. Heading Controller

The heading controller was designed in a similar fashion to the altitude controller.

The outer loop took commanded heading angle error and produced an angle of bank

command. The inner loop took the bank command to generate the required aileron

deflection. The inner loop consisted of a PI controller on the bank angle error and a roll

rate feedback, while the outer loop consisted of a PI controller to null the heading error.

The controller structure is shown in Figure III.12. Figure III.13 shows that the controller

was able to track roll commands within 5 seconds and heading commands within 20

seconds.

HEADING CONTROLLER

Outer Loop - Psi Control Inner Loop - Bank Control

p cmd

2

Phi_cmd

1
del_A

rol l disturbance
injection

U U(E)

psi

U U(E)

phi

U U(E)

p

PID PID0.15

0.5

0.5

0.75

2

X

1

Hdg Cmd

Figure III.12 Heading Controller Block Diagram

Figure III.13 Roll and Heading Control Loop Responses

 45

Figure III.14 Heading Control Inner and Outer Loops Bode Plots

5. Complete Controller

The complete controller was implemented as shown in Figure III.15. The gain and phase
margins and closed-loop bandwidths are given in Table III.1 below.

Loop GM (dB) PM (deg) CLBW (rad/s)
Yaw Damper 14.2 46.3 30
Vt Inf 91.8 0.65
Pitch Control 12.2 57.0 9.27
Altitude Commad 14.7 71.6 0.88
Roll Control 8.6 35.6 14.5
Heading Command 6.75 67.7 0.78

Table III.1 Classical Controller Bandwidth Gain and Phase Margins

Flight Controller for Non-Linear 6DOF Model of FROG UAV

phi_cmd

X
del_R

Yaw Damper
U U(E)

Vt

Del Vt cmd

X

Del_T

qo/q

Speed Control ler

Scope5

Scope4

Scope3

Scope2

Scope1

U U(E)

Pz

U U(E)

Psi

Hdg Cmd

X

del_A

Phi_cmd

Heading Control ler

Heading Cmd

-1

FROG 6DOF
(12 States + Vt)

Del_Vt Cm d

Alt Cmd

X
del_E

Alti tude Control ler

Alt Cmd

Actuator

Figure III.15 Complete Flight Controller using Classical Control Design

 46

C. LQR CONTROLLER DESIGN

The second flight controller was designed to control 4 variables in steady-state

flight – namely, airspeed (Vt), sideslip (v), heading (ψ) and altitude (h). The design was

done using an Integral LQR structure with state-feedback and is based on the technique

presented in [8]. The design requirements adopted were:

 Zero steady state errors to constant command in airspeed, sideslip, heading

and altitude.

 Overshoot to step commands in altitude and airspeed must not exceed 10%.

 Rise time in response to step altitude commands and step airspeed commands

should be around 10 sec.

 Gain margin in control loops should be at least 6 db and phase margins at least

45 degrees.

 Aileron, elevator and rudder loop bandwidth should be around 10 rad/sec.

Thrust loop bandwidth should not exceed 5 rad/sec.

The asymptotic property of the LQR controller inherently ensures a stable

feedback system. The optimal feedback gain Kopt = R-1BTP generated by the LQR method

minimizes the cost function,

T

0
 = ()TJ x Qx u Ru dt

∞
+∫ (III.41)

and assures that the closed loop system is stable, assuming that (A,B) is

stabilizable, and (Q,A) is detectable. The matrices Q≥0, R>0 are weighting matrices,

which determine the relative cost of error and energy in the states and control inputs. The

P≥0 matrix is the unique stabilizing solution to the Algebraic Riccatti Equation.
-1 - 0 T TA P PA PBR B P Q+ + = (III.42)

To ensure zero steady state errors to constant altitude and airspeed commands, the

integral control is used in conjunction with the LQR technique. The altitude error (hc – h)

and the airspeed error (uc – u) were fed to integrators. The integrating action will ensure

 47

that the inputs to each integrator, and hence the altitude and airspeed errors, will be

driven to zero in steady state in response to constant commands.

1. Stabilizable and Detectable Criteria

To design the controller using LQR (linear quadratic regulator) technique, the

plant must be stabilizable and detectable. A check on the 12-state [u v w p q r φ θ ψ Px Py

Pz] aircraft model for the 4 controlled variables showed that only 10 states where

observable. As such, the 10 state equation of motion model with only [u v w p q r φ θ ψ

Pz] was used for controller design using the step as follows.

[] T
zu v w p q r Px φ θ ψ=

 Construct the synthesis model for the plant.

 Insert transmission zeros to the synthesis model. (This will be the ‘target’

poles location for the state-feedback plant.)

 Linearize the synthesis model.

 Adjust the Q and R matrices to vary the cost of states and control inputs. (start

with identity).

 Compute the optimal gain K using MATLAB’s “lqr(A,B,Q,R,N)”.

 Insert the optimal gain K for the plant’s states and error states feedback.

 Repeat the last 2 steps while adjusting Q and R to achieve desired control

bandwidths, gain and phase margins.

2. Synthesis Model and Controller Structure

The synthesis model and controller structure are shown in the next few figures.

The Matlab code created to compute the feedback gains, closed-loop response,

bandwidth, gain and phase margins can be found in Appendix C.

 48

4
psi

3
v

2
h

1
Vt

U U(E)

x(9) = psi

U U(E)

x(2) = v

U U(E)

x(10) =Pz

x' = Ax+Bu
 y = Cx+Du

lin Model x

v

del_aert

v _sy nt

Sidesl ip Control ler

MATLAB
Function

Norm(u1:u3)

psi psi_sy nt

Heading Control ler

-1

Gain

x

h
h_sy nt

Alti tude Control ler

Vt Vt_sy nt

Ai rspeed Contol ler

4
del_th

3
del_r

2
del_e

1
del_a

Figure III.16 Overview of Synthesis Model for Controller

1

Vt_synt

1

kp_Vt

-K-

ki_Vt
s

1
1

Vt

Figure III.17 Creating Real Synthesis Pole

1
psi_synt

1

kp_psi

-K-

ki_psi

1
sGround1

psi

Figure III.18 Creating Complex Synthesis Pole

 49

8

psi

7

v

6
h

5
Vt

4
del_th_o

3
del_r_o
2

del_e_o

1
del_a_o

U U(E)

x(9) = psi

U U(E)

x(2) = v

U U(E)

x(10) =Pz
transport delay

MATLAB
Function

compute Vt

1
s

1
s

1
s

1
s

u0

Trim Vt1

88

Trim Vt

Sum6

x' = Ax+Bu
 y = Cx+Du

State-Space
Mux

K*u
Kp

K*u

Ki

-1

Gain

Demux
8

psi_cmd

7
v_cmd

6
h_cmd

5
Del_Vt_cmd

4
del_th

3
del_r

2
del_e

1
del_a

Figure III.19 Linear Integral LQR Controller Structure

For the selected design, two pair of transmission zeros were added in the h-

synthesis loop (at ζ = 0.9, wn = 0.4) and v-synthesis loop (at ζ = 0.9, wn = 1.2), and a

real pole each for Vt and ψ at 0.7 rad/s and 1.5 rad/s respectively. The diagonal elements

of the Q and R matrices were set to identity and [2000,5000,1500,2] respectively. The

3dB closed-loop bandwidths and open-loop gain and phase margins achieved are shown

in Table III.2. In comparison with the classical controller, the Integral LQR controller

offers better phase margins. However, it had assumed full-state feedback and may not be

directly implementable if any of the 10-states listed previously is not easily measurable or

tends to fluctuate.

Control Loop 3dB BW (rad/s) Gain Margin (dB) Phase Margin (°)
Aileron 4.8 12 78.9
Elevator 8.2 18 52.3
Rudder 1.2 15 91.3
Throttle 4.6 21 69.7

Table III.2 LQR Controller Bandwidth Gain and Phase Margins

 50

3. Complete LQR Controller

The non-linear system simulation structure adopted in Figure III.20 was based on

a method described in [9]. The method is based on the observation that the linear

controller obtained is designed to operate on the perturbations of the plant’s input and

outputs about the trimmed condition. Differentiating the measured outputs before they are

fed to the gains extracts out the perturbations for which the gains are designed to operate

on. To preserve the input-output behavior of the feedback system, a integrator is inserted

after the feedback gains are computed. The performance of the LQR controller on the

non-linear FROG UAV model thus obtained is shown in Figure III.21.

Integral LQR Controller for FROG UAV

4

psi

3

v

2
h

1
Vt

U U(E)

x(9) = psi

U U(E)

x(2) = v

U
U

(E
)

U U(E)

x(10) =Pz

del_psi cmd

del_h_cmd

del_Vt_cmd

del v_cmd

MATLAB
Function

compute Vt

1
s

88

Trim Vt

Scope

K*u

Kp

K*u

Ki

Ground

-1

FROG 6DOF

du/dt

Actuators

Figure III.20 Non-Linear LQR Controller Implementation

 51

Figure III.21 LQR Controller Performance with Non-linear UAV Model

a) Airspeed Change of 12ft/s b) Altitude Change of 50 ft

 c) Sideslip Velocity of 10 ft/s d) Heading Change of 0.2 rad

D. CONTROLLER COMPARISON

Coupling between the longitudinal and lateral control modes was observed on

both classical inner-loop-outer-loop controller and integral LQR controller. The

controller response and performance can be analyzed based on the sign convention used

in [10] and shown in Figure III.22.

 52

Figure III.22 ANSI/AIAA Sign Convention for Control Surface Deflection [From 10]

In the aircraft with a classical controller, the aircraft’s response to an altitude

increase of 20 feet in Figure III.23 shows typical longitudinal mode coupling. The

controller input a elevator up (negative δe) command to tilt the aircraft nose up

immediately upon receiving the altitude increase command, airspeed dropped to 85 fps

and the throttle had to be increased by about 50% above trim level to bring the airspeed

back to 88 fps. Figure III.24 shows the reverse coupling relation. A step command of +12

fps sent to the speed controller causes the throttle to open and aircraft to accelerate. As

the aircraft speeds up, it generates more lift and as a result begins to climb by up to 6 feet.

The altitude controller immediately commands a positive δe to arrest the climb and

attempt to return the aircraft to its original altitude. As it returns to the original altitude,

the throttle input stabilizes at 20% about trim value to maintain the new airspeed.

Lateral coupling can be observed in Figure III.25. When a step command of +0.2

radian was input to the heading controller, the controller immediately issued a positive

aileron control input to bank the aircraft right. The yaw controller simultaneously issued

negative δr input for the rudder to provide turn coordination as designed.

 53

Figure III.23 Classical Controller – Response to Altitude Change of +20 feet

Figure III.24 Classical Controller - Response to Speed Change of +12 fps

Figure III.25 Classical Controller - Response to Heading Change of +0.2 rad

 54

Similar kind of coupling effects can be observed in the Integral LQR controller.

However, with full-state feedback, the integral LQR controller is able to minimize the

coupling effects better. For example, as shown in Figure III.26, although the negative δe

and positive δthrottle were still issued by the controller to execute the altitude change, the

throttle input was issued earlier compared to the classical controller and resulted in only

minimal drop in the aircraft speed as the aircraft climbed to its commanded new altitude.

The coupling effect on altitude was also much reduced when a speed change was

commanded. This is shown in Figure III.27. The altitude changed less than 1 feet in the

integral LQR controller aircraft versus 6 feet in the classical controller aircraft.

Figure III.26 LQR Controller – Response to Altitude Change of +20 feet

Figure III.27 LQR Controller - Response to Speed Change of +12 fps

 55

Similarly, the lateral coupling effect is much reduced in the integral LQR

controller. The coupled altitude increase due to aileron deflection needed to execute the

heading change was about 0.2 feet in Figure III.28 compared to that of around 1 foot in

the classical controller aircraft in Figure III.25.

Figure III.28 LQR Controller - Response to Heading Change of +0.2 rad

In comparison, the LQR controller uses all four control inputs to execute

commanded changes instead of one control input for each response characteristics as in

the classical inner-outer loop design. Hence, it is more responsive and more efficient in

control inputs utilization. For example, comparing Figure III.28 and Figure III.25, the

aileron and rudder inputs to execute heading change is more than one order smaller in the

case of the integral LQR. However, the integral LQR structure is based on full-state

feedback and assumes all the states are measurable and not too noisy. Also, the cross-

coupled nature of the control inputs makes it more difficult to deduce the response of

each control input in a given flight situation and makes troubleshooting more difficult.

 56

THIS PAGE INTENTIONALLY LEFT BLANK

 57

IV. NAVIGATION ALGORITHM DESIGN

This section discusses the development of an infrared vision-based shipboard

navigation algorithm to determine the position and orientation of an aircraft with respect

to a ship with three visible points of known separation. It covers the problem formulation

and includes a simulation example based on the numerical analysis technique proposed in

[11] to determine the range of an aircraft which is instrumented with an IR camera with

respect to the ship. The simulation serves as a precursor to explore implementation of an

autonomous shipboard landing algorithm for the FROG UAV.

A. SHIPBOARD LANDING PROBLEM FORMULATION

Design of the autonomous shipboard landing algorithm requires first determining

the range and orientation of the aircraft to a ship which has a minimum of three

identifiable points. However, using only three reference points (RPs) always results in

more than one solution as has been shown by a number of researchers of this problem.

This non-uniqueness is usually resolved at close ranges by using more than three points

but for the purposes of this study, it was assumed that three reliable points may be

computed from the location of the smokestack and the extents (width and height) of the

ship even when the aircraft is sufficiently far from the ship as an input condition to the

navigation algorithm development. Figure IV.1 shows an example of such a scenario that

can be used by the algorithm developed.

Figure IV.1 Examples showing images of three RPs

 58

d 3d 1
d 2

1p

3p

2p

Figure IV.2 The 3-point geometry applied to shipboard navigation

Once the image of the three RPs is established, the geometry of the Posed 3-Point

(P3P) problem to determine the range and orientation of the aircraft’s IR camera with

respect to the ship in the shipboard autolanding navigation sceneario is shown in Figure

IV.3 formulates the problem formulation as follows: Let { }iiii zyxp ,,= , 3,...,1=i

denote the vectors connecting the origin of the camera frame O with the three known

points iP , 3,...,1=i . Let id , 3,...,1=i denote distances between these points. Then,

0121 ≠=− dpp , 0231 ≠=− dpp , 0332 ≠=− dpp , 321 ddd ≠≠ , (IV.1)

and ii ps = , 3,...,1=i denote the norms of the vectors ip . Using the pinhole

camera model, the projection of each RP onto the image plane of the camera with the

focal length f has the following form:

()

=

=

i

i

ii

i
i z

y
x
f

v
u

pπ , 3,...,1=i . (IV.2)

 59

Figure IV.3 Three-point perspective pose estimation problem geometry

Combining equations (IV.1) and (IV.2) result in nine equations with nine

unknowns { }iii zyx ,, , 3,...,1=i . Using (IV.2),

f
ux

y ii
i = ,

f
vx

z ii
i = . (IV.3)

Substituting these expressions into the (IV.1), equations (IV.2) and (IV.1) can be

reduced to a set of three nonlinear equations in three unknowns:

() () ()

() () ()

() () () ,2

,2

,2

2
3323232

2

3,2

2222

2
2313131

2

3,1

2222

2
1212121

2

2,1

2222

fdxxvvuufxvuf

fdxxvvuufxvuf

fdxxvvuufxvuf

i
iii

i
iii

i
iii

=++−++

=++−++

=++−++

∑
∑
∑

=

=

=

 (IV.4)

To simplify the notation, (IV.4) can be re-written as follows

.2
,2
,2

3
2
33223

2
2

2
2
33113

2
1

1
2
22112

2
1

dCxxxDBx
dCxxxDAx
dBxxxDAx

=+−
=+−
=+−

 (IV.5)

where the coefficients A, B, C, id , 3,...,1=i are strictly positive by construction.

 60

Using (IV.5) one can obtain another system of equations better suited for further

analysis. First, observe that

11 s
A
fx = , 22 s

B
fx = , 33 s

C
fx = . (IV.6)

Rewriting system (IV.5) in terms of is , 3,...,1=i gives

,cos2
,cos2
,cos2

2
3

2
3332

2
2

2
2

2
3231

2
1

2
1

2
2121

2
1

dssss
dssss
dssss

=+−
=+−
=+−

α
α
α

 (IV.7)

where ()
21

21
1

,cos
pp
pp

=α , ()
31

31
2

,cos
pp
pp

=α , ()
32

32
3

,cos
pp
pp

=α (from Figure IV.3)

The system of equations in (IV.7) has an upper bound of eight (2x2x2) real

solutions. Moreover they form four symmetric pairs, because if a triplet ()∗∗∗
321 ,, sss is a

solution, than the triplet ()∗∗∗ −−− 321 ,, sss forms a solution as well. Geometrically, (IV.7)

can be described as an intersection of three orthogonal elliptic cylinders with the

semiaxes rotated around corresponding symmetry axes by the angle of 45º. This follows

directly from the canonical form of equation (IV.7). The magnitudes of the semiaxes for

each cylinder are equal to

i

i
ii

dba
αcos1

,
±

= , 3,...,1=i . (IV.8)

It is clear that the intersection of any two cylinders is always non-empty and the

number of solutions in this case is infinite. However, by adding a third cylinder one can

get only a finite number of intersection points. In practice for the system (IV.7), this

number cannot be zero or two. Therefore, the only possible set of solutions contains four,

six or eight points.

 61

If Assumption (A1) is made such that camera is always in front of the plane

defined by three RPs Pi, 3,...,1=i , the x-component of each vector { }iiii zyxp ,,= ,

3,...,1=i that satisfies this assumption must be positive (i.e. 0>is , 3,...,1=i).

With the substitution in (IV.9) and (IV.10), the system of equations in (IV.7) can

be reduced to a fourth-order polynomial in 2
is .

1

2

s
su =∗ and

1

3

s
s

v =∗ (IV.9)

112 cosαsus += ∗ and 213 cosαsvs += ∗ , (IV.10)

The numerical analysis technique in [11] further showed that with assumptions

A2) i
i

i
i

dmaxsmin
3,13,1 ==

>> ;

A3) the camera is sufficiently far from the ship.

2/0 πα << i , πα <∑
=

3

1i
i , ∑

≠
=

≤

il
l

li
3,1

αα , 3,...,1=i . (IV.11)

And from first two equations in (IV.7), 2s and 3s can be expressed as:

() ()2
1

2
1

2
1111 coscos −−− −−±= iiii dssss αα , 3,2=i . (IV.12)

With the consequence that all possible solutions for 1s that satisfies assumptions A1-A3 is

bounded by the interval:

=

−
=≤<

==

∗

i

i

i
i

i

i

dd
ss

αα sin
min

cos1
min0

2,122,1
11 . (IV.13)

 62

B. AIRCRAFT-SHIP ORIENTATION DETERMINATION

Based on the analysis presented in [11], the following algorithm was applied to

solve the P3P. Suppose a good initial guess of)0(n the normal to the plane generated by

the three points is available, then for step k:

i) Solve numerically equation (IV.10) for)(
1

kx in the interval equation (IV.13), using

)1(
1

−kx as an initial guess;

112 cosαsus += ∗ and 213 cosαsvs += ∗ , (IV.10)

=

−
=≤<

==

∗

i

i

i
i

i

i

dd
ss

αα sin
min

cos1
min0

2,122,1
11 . (IV.13)

ii) substitute each solution)(
1

kx obtained in i) into (IV.3) to get)(
1_

ˆ k
ip and)(

2_
ˆ k

ip ;

f
ux

y ii
i = ,

f
vx

z ii
i = . (IV.3)

iii) compute normals

)(
1_3

)(
1_1

)(
1_2

)(
1_1

)(
1_3

)(
1_1

)(
1_2

)(
1_1)(

1 ˆˆˆˆ
)ˆˆ()ˆˆ(

kkkk

kkkk
k

pppp

pppp
n

−−

−×−
= and

)(
2_3

)(
2_1

)(
2_2

)(
2_1

)(
2_3

)(
2_1

)(
2_2

)(
2_1)(

2 ˆˆˆˆ
)ˆˆ()ˆˆ(

kkkk

kkkk
k

pppp

pppp
n

−−

−×−
= ;

iv) choose set)(
1_

ˆ k
ip , 3,1=i or)(

2_
ˆ k

ip , 3,1=i that maximizes the dot product

)1()(, −kk nn .

Using the solution provided by the P3P algorithm the relative orientation of the

aircraft with respect to the plane formed by the three RP’s can be computed as follows:

Let {3p} denotes an orthogonal coordinate system attached to the plane generated

by the three RP’s, let {c} denotes the coordinate system attached to the camera and let

 63

Rc
p3 be the coordinate transformation from {3p} to {c}. Form three orthogonal vectors 1r ,

2r , 3r using the correct solution 1p̂ , 2p̂ , 3p̂ as follows:

12

12
1 ˆˆ

)ˆˆ(

pp

ppr
−

−
= ,

1312

1312
3 ˆˆˆˆ

)ˆˆ()ˆˆ(

pppp

pppp
r

−−

−×−
= , 132 rrr ×= . (IV.14)

Then []3213 rrrRc
p = .

But from geometry, the transformation matrix Rc
p3 can also be expressed using Euler

angles as:

−+
+−

−
=

pppppppppppp

pppppppppppp

ppppp
c
p R

333333333333

333333333333

33333

3

coscossincoscossinsinsinsincossincos
sincoscoscossinsinsincossinsinsincos

sincossincoscos

φθφψφθψθψφθψ
φθφψφθψφψφθψ

θθψθψ
,

 (IV.15)

where p3ψ , p3θ , p3φ are yaw, pitch and bank angles, respectively, with respect to

the plane formed by the three RP’s. Therefore, the Euler angles can be found in the

following manner:

11

12
3 arctan

r
r

p =ψ , 133 arcsin rp −=θ ,
33

23
3 arctan

r
r

p =φ . (IV.16)

In general, the coordinate system {3p} does not coincide with the inertial

coordinate system {i}. Therefore, the attitude {c} of the camera with respect to {i} can be

found using (IV.16)from the transformation matrix RR p
i

c
p

3
3 , where Rp

i
3 can be obtained

from the known positions of the three RP’s in {i}, using the same manner.

C. ALGORITHM SIMULATION

The P3P algorithm developed above was applied to determine the range of the

aircraft with respect to the ship in a simulation example described below.. The ship is

moving North at a constant speed of 10m/s. Its motion is characterized by pitch and heave

oscillations with a period of 12sec. The aircraft is performing a left turn with descent

from the initial point (-1450, -200, 470)m with respect to the ship’s initial position at an

 64

airspeed of 53m/s. The camera's focal length is mf 1.0= and declination angle with

respect to a/c longitudinal axis is -6deg. The errors in the projection of each RP onto the

image plane of the camera are modeled as independent Gaussian random process with

zero mean and standard deviation of one pixel.

Figure IV.4 shows the horizontal projection of each of the three RP’s on the ship

tracked by the camera and of the aircraft’s motion. Figure IV.5 gives the corresponding

3D representation.

Figure IV.4 Horizontal projection of a/c’s and ship’s motion

Figure IV.5 3D representation of the simulation scenario

In summary, simulation results shows that the proposed algorithm is a feasible

method of implementing flight navigation and trajectory tracking in order to adopt certain

flight profiles at various stages of the mission. This can be further demonstrated on the

FROG UAV test-bed in the near future.

 65

V. GROUND TEST RESULTS

To test capability of the computer in capturing GPS, IMU and PWM data on

aircraft in the same manner it would operate in flight, a full system verification test was

conducted at the UAV Lab. All the aircraft equipment and the newly installed miniature

computer were powered from an internal battery. A floppy was used to boot up the xPC

operating kernel and then removed for the UAV nose fairing to be installed. The data

collection application was ‘built’ on the Host PC and uploaded to the aircraft’s computer

via wireless serial modem. Commands to start and stop data collection were issued from

the Host PC remotely. The engine was started on several tests to check for

electromagnetic interference (EMI) on data transfer and to assure pilot control capability

from various distances.

A. DATA ANALYSIS

The ground test proved that the aircraft computer was able to correctly collect and

interpret the data from various instruments. The GPS, IMU, PWM and A/D data captured

on a particular data collection test is presented in the next few pages. Figure V.1 to V.9

show the plots of GPS RMC and GGA data captured when the UAV was moved in a

triangular path of approximately South-West, followed by East, followed by North in

front of the UAV Lab.

1. GPS Signals

From the GPS RMC data captured, Figure V.1 shows the correct UTC, while

Figures V.2 and V.3 show the latitude and longitude of Monterey airport area where the

test was conducted. The data in Figures V.2 and V.3 was combined and re-presented in

ground coordinates to show the path taken by the aircraft while data capturing was in

progress. This is shown in Figure V.4 together with the bearing (215°, followed by 80°,

followed by 350°) the UAV had taken along the path. Figure V.5 shows the ground speed

at which the UAV was moved around the path and the date of the test (i.e. 13/03/02).

 66

Figure V.6 shows the magnetic variation in degrees and the direction of magnetic north

and true north.

Figure V.1 GPS RMC UTC (left) and RMC Status (right)

Figure V.2 GPS RMC Lattitude (left) and Latitude Direction (right)

Figure V.3 GPS RMC Longitude (left) and Longitude Direction (right)

> [t(35:55),RMC_ RMC_UTC(35:55)]

 0. 0975 181853.00
 0. 1000 181853.00
 0. 1025 181853.00
 0. 1050 181853.00
 0. 1075 181853.00
 0. 1100 181853.00
 0. 1125 181853.00
 0. 1150 181853.00
 0. 1175 181854.00
 0. 1200 181854.00
 0. 1225 181854.00
 0. 1250 181854.00
 0. 1275 181854.00

 67

Figure V.4 Position Plot From RMC data (left) and GPS RMC Track (right)

Figure V.5 GPS RMC Ground Speed (left) and dd/mm/yy (right)

Figure V.6 GPS RMC Magnetic Variation (left) and MV Angle (right)

 68

The GPS GGA sentence provides data complementary to the GPS RMC sentence

for navigation purposes. Figures V.7 shows the UTC time in the hh.mm.ss.ss format and

the number of satellites in use. Figure V.8 demonstrates a clear correspondence to the

data in Figure V.7 (right) and shows that the horizontal dilution of precision increased to

around 2.0 when the number of available satellites in sight decreased from 5 to 4, and to

3.6 when the number of available satellites dropped further to 3. Figure V.9 shows the

altitude of antenna in meters above mean sea-level.

Figure V.7 GPS GGA UTC (left) and Number of Satellite Vehicles Used (right)

Figure V.8 GPS GGA Fix Quality (left) and HDOP (right)

 69

Figure V.9 GPS GGA Antenna Height (left) and DGPS Data Age (right)

2. A/D and PWM Signals

The voltages of the control surfaces and throttle servos captured by the A/D signal

are presented together with the corresponding PWM commands received by the Futaba®

receiver in Figures V.10 to V.13. Each pair of figures clearly shows servos responding to

the commands issued to it. While the A/D measured signals are almost noise-free, the

PWM signals captured showed data drop-outs occasionally over a period of 5 to 10

seconds. As such, some form of filtering needs to be implemented if the PWM captured

data is required. In our case, this does not pose a serious concern as the PWM signal

captured is not used for flight control processing. Rather, it is measured to record the

commands sent to the Futaba® receivers and correlate with how the aircraft responds

when the Futaba® controller is used.

Figure V.10 Aileron and Elevator Servo Voltages measured by A/D

 70

Figure V.11 PWM Commands Issued to Aileron and Elevator Servos

Figure V.12 Rudder and Throttle Servo Voltages measured by A/D

Figure V.13 PWM Commands Issued to Rudder and Throttle

 71

3. Crossbow Signals

The signals from the Crossbow IMU were captured on another ground test after

Crossbow IMU was initialized. They are presented as time-plots in Figure V.14. The path

taken as the UAV was pushed on its landing gear around the NPS UAV Lab is given in

the first plot. The ± 2° roll angle measured is in-line with the manner in which the body

of the aircraft tilts as it moves along its path, except when it reached the slightly sloped

turnaround point when the left-wing was slightly lower as the aircraft turns. The effect of

the slight ground slope near the turnaround point was evident in the pitch angle plot. The

pitch angle increases from 0 to 7° as the aircraft slowly moves up the slope and changes

to –7° as it turns back. The longitude versus latitude plot shows the aircraft initially

veered right with respect to its initial heading as it moves away from the UAV Lab. It

subsequently turned left for some distance before making an about turn. This is clearly

reflected in the Psi (heading) data measured by Crossbow.

 72

The angular rates and linear accelerations recorded by the Crossbow are more

‘noisy’ but still correlate well with the FROG UAV’s motion. Roll rate and pitch rate

fluctuate around zero as the UAV moves around since the landing gear introduces

vibration to the Crossbow. In the yaw-rate data captured, the about-turn at about 70

seconds correspondent to the left turn the aircraft had to take. The acceleration in the z-

axis shows +1g due to gravity as expected.

Figure V.14 Crossbow IMU Signals

 73

B. EMI ISSUES

Despite successful demonstration of sensor data capture and interpretation on the

new onboard computer, the ground tests revealed two communication related problems in

the setup. The first was that data downlink from Target PC to Host PC via the Freewave®

modems was intermittent. The xPC real-time operating system would display a “COM

failure” message on the Host PC during some downloads. The second was that during

data downloading, the aircraft control surfaces respond to commands sent from the

Futaba® remote control with significant delay. This is unacceptable as it can result in a

total loss of control when emergency pilot mode of control is used. Both problems occur

only when the wireless modem is used in place of a direct null-modem cable between the

Host PC and Target PC.

Initial investigations explored the effect of changing some of the modem’s

transmission parameters such as maximum data packet size, minimum data packet size,

power setting, the transmission frequency and baud rate but failed to resolve the

occasional COM failure problem that occurred during data download. Subsequent

investigations narrowed down to electromagnetic interference (EMI) generated on the

aircraft and serial communication data latency timings as possible causes.

The first assessment resulted from the observation that upload of application

programs and commands to the aircraft computer did not encounter transmission

problems when radio signals were sent to the onboard modem. However, during the

downloading of recorded flight data, when the onboard modem was transmitting, EMI

from cables onboard the aircraft can corrupt the transmitted data and result in

transmission errors. This hypothesis was supported by absence of communication failure

when the PWM capture cable was removed.

Another possible cause could be the delay time the xPC operating kernel expects

data to be available on the serial link during transmission. This may introduce

communication failure in the xPC software depending on how much latency time the xPC

operating kernel would accommodate. In a direct cable link, such a problem does not

arise as the cable is always connected and does not require transmission handshaking as

in the wireless modems.

 74

The freezing of control surface response on the aircraft when the onboard modem

is transmitting could be due to the interference of the modem transmission on the Futaba®

receiver.

 75

VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

In support of the research objective on coordination and control of a cluster of

UAVs, a miniature computer critical for onboard real-time data processing in order to

execute autonomous guidance and control of aircraft was constructed and installed on the

FROG UAV in this project. In contrast to the original setup where flight and navigation

data had to be transmitted to a computer on the ground for processing and control

commands computation before being re-transmitted back to the aircraft for control

execution, the new onboard computer integrates all the sensor data for control and

guidance commands computation on the aircraft. This reduces sensor data processing

time from 25 milliseconds (at 40 Hz downlink data rate) by 2 orders of magnitude to

around 350 microseconds. It would also reduce control commands execution time to tens

of microseconds given the computer generates PWM signals to control the servos directly

as compared to 160 milliseconds in the current setup. The presence of an onboard

computer also provides the computational capability to implement data processing for

more advanced research activities in the future. To date, the computer and all software

drivers written to interface with various onboard instruments have been tested.

Additionally, a new 6-DOF model of the FROG UAV has been developed in

Simulink. This will facilitate future simulation of the control and guidance algorithm for

the FROG UAV. As part of this thesis, two possible autopilot designs – one using

classical control techniques and one using modern control theory – have also been

designed for the UAV. A vision-based navigation algorithm for the FROG UAV has also

been demonstrated in software simulation. These control and navigation algorithms can

be hardware-in-the-loop tested using available facilities at NPS before verification flights

in the near future.

The use of the newly marketed xPC rapid prototyping system in this project

greatly expedited the development and implementation of the desired control setup. A

thorough understanding of the capabilities and ways to overcome its shortcomings has

resulted from this project. The expertise accumulated will be useful for many projects at

 76

NPS, not just in the Aeronautics Department, since the rapid prototyping approach can be

applied to shorten the design-to-full-system testing timeframe of any conceivable system

being developed.

B. RECOMMENDATIONS

With the software for navigation and flight data processing on the aircraft fully

verified, the only remaining obstacle preventing a flight test pertains to the wireless

communication EMI issue. The following can be pursued in the near future.

1. Measure the signal-to-noise level and the signal power level during the uplink and the

downlink to quantify the signal power required and the noise limits the control setup

can accommodate.

2. Determine the components causing EMI and introduce EMI filters accordingly to

remove or reduce the EMI on the aircraft.

3. Consult Mathworks, Inc on the serial communication latency time the xPC operating

kernel can accept and find a way to change this parameter in the xPC operating kernel

to accommodate any delay in the serial modem transmission.

4. Explore the use of a wireless Ethernet link in avoiding the interference on the

downlink transmission. A wireless Ethernet link can also reduce massive flight data

download times by 1 to 2 orders of magnitude.

 77

APPENDIX A. DESCRIPTION OF FROG UAV

 78

THIS PAGE INTENTIONALLY LEFT BLANK

 79

APPENDIX B. AIRBORNE COMPUTER I/O INTERFACE

The hardware setting for the miniature computer and various I/O boards that was

built for the UAV is given in the sections below. Similar information from the original

AC-104 computer is also given in case the miniature computer needs to be re-configured

back to the AC-104 configuration.

1. I/O ADDRESS

The I/O addresses of resources in the new miniature computer are shown in Table

B.1. The I/O resource addresses for the original AC-104 is also shown as reference.

AC-104 Computer Base Address
(Offset) New Computer

IDE hard disk interface 0x1F0 Not Installed
Reserved 0x1F8 Not Installed
Ruby-MM
8 Channel D/A, 24 Chan. Dig. I/O 0x200 (0x40) Removed

AIM/16-1 16
Channel A/D, 16 Chan. Dig. I/O 0x280 (0x20) AIM/16-1

Serial Port Number 4 (ET Models Only) 0x2E8 COM4
Reserved 0x2F0 Not Installed
Serial Port Number 2 0x2F8 COM2
Flex/104 IP Carrier Board 1 0x300 Removed
Pause and Error Light Control Register 0x310 Available. Not Used
Flex/104 IP Carrier Board 2 0x320 Not Installed
M-Systems 4MB Flash Disk 0x330 4MB Flash Disk
Ruby-MM-16
16-channel D/A (optional) 0x340 Not Installed

NAI-5718 Synchro/Resolver Board 0x355 Not Installed
Flex/104 IP Carrier Board 3 0x360 Not Installed
Multimode Parallel Port (when enabled) 0x378 Available. Not Used
Ethernet 0x380 Ethernet
Monochrome display adapter 0x3B0 Not Installed
Flat Panel/CRT VGA display adapter 0x3C0 VGA Display
Video Controller 0x3D0 Video Controller
Serial Port Number 3 (ET models only) 0x3E8 COM3
Reserved 0x3F0 Not Installed
Floppy disk controller ports 0x3F2 Floppy disk controller
Serial Port Number 1 0x3F8 0x08

 0x210 QMM-10 Timer/Counter
(for PWM capture)

 0x240 QMM-5 Timer Counter
(for PWM generation)

Table B.1 I/O Resource Addresses

 80

2. I/O BOARD PIN OUT CONNECTION AND USAGE

The pin utilization for the I/O cards installed in the miniature computer is given in

the Tables B.2, B.3 and B.4 below. Bold items indicated connected lines.

AC104 Signal Board Board Signal AC104

1 In 1 1 2 In 2 26

2 Gate 1 3 4 Gate 2 27

3 Out 1 (PWM1 out) 5 6 Out 2 (PWM2 out) 28

4 In 3 7 8 In 4 29

5 Gate 3 9 10 Gate 4 30

6 Out 3 (PWM3 out) 11 12 Out 4 (PWM4 out) 31

7 In 5 13 14 Out 5 32

8 Gate 5 15 16 Frequency Output 33

9 NC 17 18 NC 34

10 NC 19 20 NC 35

11 NC 21 22 NC 36

12 NC 23 24 NC 37

13 NC 25 26 NC 38

14 NC 27 28 NC 39

15 NC 29 30 NC 40

16 NC 31 32 Interrupt Input 41

17 Digital Out 7 33 34 Digital In 7 42

18 Digital Out 6 35 36 Digital In 6 43

19 Digital Out 5 37 38 Digital In 5 44

20 Digital Out 4 39 40 Digital In 4 45

21 Digital Out 3 41 42 Digital In 3 26

22 Digital Out 2 43 44 Digital In 2 27

23 Digital Out 1 45 46 Digital In 1 28

24 Digital Out 0 47 48 Digital In 0 29

25 +5V 49 50 Ground 50

Table B.2 QMM-5 (PWM Generation) Pin Interface

 81

AC104 Signal Board Board Signal AC104

1 In 1 1 2 In 2 26

2 Gate 1 (PWM1 In) 3 4 Gate 2 (PWM1 In) 27

3 Out 1 5 6 Out 2 28

4 In 3 7 8 In 4 29

5 Gate 3 (PWM2 In) 9 10 Gate 4 (PWM2 In) 30

6 Out 3 11 12 Out 4 31

7 In 5 13 14 Out 5 32

8 Gate 5 15 16 Frequency Output 33

9 In 6 17 18 In 7 34

10 Gate 6 (PWM3 In) 19 20 Gate 7 (PWM3 In) 35

11 Out 6 21 22 Out 7 36

12 In 8 23 24 In 9 37

13 Gate 8 (PWM4 In) 25 26 Gate 9 (PWM4 In) 38

14 Out 8 27 28 Out 9 39

15 In 10 29 30 Out 10 40

16 Gate 10 31 32 Interrupt Input 41

17 Digital Out 7 33 34 Digital In 7 42

18 Digital Out 6 35 36 Digital In 6 43

19 Digital Out 5 37 38 Digital In 5 44

20 Digital Out 4 39 40 Digital In 4 45

21 Digital Out 3 41 42 Digital In 3 26

22 Digital Out 2 43 44 Digital In 2 27

23 Digital Out 1 45 46 Digital In 1 28

24 Digital Out 0 47 48 Digital In 0 29

25 +5V 49 50 Ground 50

Table B.3 QMM-10 (PWM Capture) Pin Interface

 82

AC104 Signal Board Board Signal AC104

1 Analog Ground 1 2 V reference (5V) 26

2 Analog In Ch 1 Hi
(Servo Pot 1 Hi) 3 4 Analog In Ch 1 Lo

(Servo Pot 1 Lo)
27

3 Analog In Ch 2 Hi
(Servo Pot 2 Hi) 5 6 Analog In Ch 2 Lo

(Servo Pot 2 Lo)
28

4 Analog In Ch 3 Hi
(Servo Pot 3 Hi) 7 8 Analog In Ch 3 Lo

(Servo Pot 3 Lo)
29

5 Analog In Ch 4 Hi
(Servo Pot 4 Hi) 9 10 Analog In Ch 4 Lo

(Servo Pot 4 Lo)
30

6 Analog In Ch 5 Hi 11 12 Analog In Ch 5 Lo 31

7 Analog In Ch 6 Hi 13 14 Analog In Ch 6 Lo 32

8 Analog In Ch 7 Hi 15 16 Analog In Ch 7 Lo 33

9 Analog In Ch 8 Hi 17 18 Analog In Ch 8 Lo 34

10 Analog Ground 19 20 +15V 35

11 -15V 21 22 Digital I/O Ground 36

12 Digital I/O Ch 1 23 24 Digital I/O Ch 2 37

13 Digital I/O Ch 3 25 26 Digital I/O Ch 4 38

14 Digital I/O Ch 5 27 28 Digital I/O Ch 6 39

15 Digital I/O Ch 7 29 30 Digital I/O Ch 8 40

16 Digital I/O Ch 9 31 32 Digital I/O Ch 10 41

17 Digital I/O Ch 11 33 34 Digital I/O Ch 12 42

18 Digital I/O Ch 13 35 36 Digital I/O Ch 14 43

19 Digital I/O Ch 15 37 38 Digital I/O Ch 16 44

20 External Trigger 39 40 Digital I/O Ground 45

NOTE: Channels 21-25 and 46-50 are not connected on the AC-104 front panel

Table B.4 AIM16 (Servo Pots & Differential Pressure Sensor) Pin Interface

 83

3. INTERRUPT ROUTINE (IRQ) ASSIGNMENT

The interrupt routine vector addresses for the new miniature computer is given in

Table B.5. The IRQ assignment for the original AC-104 computer is also shown as

reference should the miniature computer needs to be re-configured back to the original

AC-104 configuration.

IRQ AC-104 I/O Resource New I/O Resource

IRQ0 ROM BIOS clock tick function Same

IRQ1 Keyboard Same

IRQ2 Cascaded inputs from IRQs 8 - 15 QMM-5

IRQ3 Serial Ports 2 (and 4, for ET models only) COM2

IRQ4 Serial Ports 1 (and 3, for ET models only) COM1

IRQ5 LPT2 or Flex/104 IP Carrier Board 3 COM4

IRQ6 Floppy drive controller Same

IRQ7 Parallel Port or optional AX-10425
frequency driver

QMM-10

IRQ8 Watchdog timer and error handling Same

IRQ9 Ethernet Same

IRQ10 Controller pause function COM3

IRQ11 Flex/104 IP Carrier Board 1 Removed

IRQ12 Not Used Same

IRQ13 Reserved for co-processor (not used) Same

IRQ14 IDE hard disk controller Same

IRQ15 Flex/104 IP Carrier Board 2 Same

Table B.5 IRQ Assignment

 84

THIS PAGE INTENTIONALLY LEFT BLANK

 85

APPENDIX C. SOFTWARE DRIVERS & LQR DESIGN CODE

This appendix contains the “C” source code written to receive and decode the data

streams from the Ag132 GPS receiver and the Crossbow AHRS400CA-100 serving as

the IMU. The IMU and GPS interface drivers were written by the author for this project

while the GPS messages decoding routines were written by Dr. Vladimir Dobrokhodov

for a previous project. All the C-codes had to be packaged into MATLAB’s S-Function

Level 2 structure which adopts a specific sequence to initialize a simulation block, update

its states, control sampling rates, output data and terminate the function. Each set of code

has to be “mex” by a compatible C-compiler in MATLAB and ‘build’ into executable

code by xPC’s Real-Time Workshop before it can be called from within a Simulink block

as a S-Function. Details of how this is done are discussed in Refs [12] and [13].

1. CROSSBOW AHRS DATA RECEIVE DRIVER

/*-- */
/* CROSSBOW AHRS Interface Driver */
/* This routine is a modification of the rs232brec.c routine from Mathworks. */
/* Function: Receive undelimited RS232 bytes from Crossbow AHRS. */
/* Implements a two-buffer system to collect all available data */
/* Search for Crossbow header byte, test if checksum of next X-1 bytes */
/* tally with checksum byte. If so, valid Crossbow message. Output. */
/* If not adequate bytes to form new message, exit with last message */
/* X = width of Crossbow message specified by user in block's mask */
/* Jan 18, 2002 */
/* Filename: xbowrcv1p3.c */
/* Written by: Bock-Aeng Lim */
/*--*/
/* Original Source file comments:
/* $Revision: 1.1 $ $Date: 2001/07/20 22:11:41 $ */
/* rs232rec.c - xPC Target, non-inlined S-function driver for RS-232 receive (asyn) */
/* Copyright 1996-2001 The MathWorks, Inc.
*/

#define S_FUNCTION_LEVEL 2
#undef S_FUNCTION_NAME
#define S_FUNCTION_NAME xbowrcv1p3

#include <stddef.h>
#include <stdlib.h>

#include "tmwtypes.h"
#include "simstruc.h"

#ifdef MATLAB_MEX_FILE
#include "mex.h"
#else
#include <windows.h>
#include <string.h>
#include "rs232_xpcimport.h"
#include "time_xpcimport.h"

 86

#endif

/* Input Arguments from Simulink block's user mask */
#define NUMBER_OF_ARGS (3)
#define PORT_ARG ssGetSFcnParam(S,0) /* COM port to use */
#define WIDTH_ARG ssGetSFcnParam(S,1) /* max width */
#define SAMP_TIME_ARG ssGetSFcnParam(S,2) /* User specified sample time */

#define NO_I_WORKS (3) /* current pos pointer in buf, rec length,
bufCount */
#define NO_R_WORKS (0)
#define NO_P_WORKS (0)
#define NO_D_WORKS (1) /* for buf array */

#define HEADER 255 /* Crossbow message header byte */

static char_T msg[256];
extern int rs232ports[];

static void mdlInitializeSizes(SimStruct *S)
{
#ifndef MATLAB_MEX_FILE
#include "rs232_xpcimport.c"
#include "time_xpcimport.c"
#endif

 ssSetNumSFcnParams(S, NUMBER_OF_ARGS);
 if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {
 sprintf(msg,"Wrong number of input arguments passed.\n"
 "%d arguments are expected\n",NUMBER_OF_ARGS);
 ssSetErrorStatus(S,msg);
 return;
 }

 /* Set-up size information */
 ssSetNumContStates(S, 0);
 ssSetNumDiscStates(S, 0);
 ssSetNumOutputPorts(S, 2); /* data, "done pulse" */
 ssSetNumInputPorts(S, 2); /* rec length, enable */

 ssSetOutputPortWidth(S, 0, 1); /* Function-call */

 ssSetOutputPortWidth(S, 1, (int)mxGetPr(WIDTH_ARG)[0]);
 ssSetOutputPortDataType(S, 1, SS_UINT8);

 ssSetInputPortDirectFeedThrough(S, 0, 1);
 ssSetInputPortDirectFeedThrough(S, 1, 1);
 ssSetInputPortWidth(S, 0, 1);
 ssSetInputPortWidth(S, 1, 1);

 ssSetInputPortRequiredContiguous(S, 0, 1);
 ssSetInputPortRequiredContiguous(S, 1, 1);

 ssSetNumSampleTimes(S,1);
 ssSetNumIWork(S, NO_I_WORKS);
 ssSetNumRWork(S, NO_R_WORKS);
 ssSetNumPWork(S, NO_P_WORKS);
 ssSetNumDWork(S, NO_D_WORKS);

 ssSetDWorkDataType(S, 0, SS_UINT8);

ssSetDWorkWidth(S, 0, (int)mxGetPr(WIDTH_ARG)[0]);
 ssSetDWorkWidth(S, 0, 2048);

 ssSetNumModes(S, 0);
 ssSetNumNonsampledZCs(S, 0);

 ssSetSFcnParamNotTunable(S,0);
 ssSetSFcnParamNotTunable(S,1);

 87

 ssSetSFcnParamNotTunable(S,2);

 ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE | SS_OPTION_PLACE_ASAP);
}

/* Function to initialize sample times */
static void mdlInitializeSampleTimes(SimStruct *S)
{
 ssSetSampleTime(S, 0, mxGetPr(SAMP_TIME_ARG)[0]);
 if (mxGetN((SAMP_TIME_ARG))==1) {
 ssSetOffsetTime(S, 0, 0.0);
 } else {
 ssSetOffsetTime(S, 0, mxGetPr(SAMP_TIME_ARG)[1]);
 }
 ssSetCallSystemOutput(S, 0);
}

#define MDL_START /* Change to #undef to remove function */
#if defined(MDL_START)
static void mdlStart(SimStruct *S)
{
#ifndef MATLAB_MEX_FILE

 ssGetIWork(S)[0] = 0; /* set current buf pointer = 0 */
 ssGetIWork(S)[2] = 0; /* set bufCount = 0 */

#endif
}
#endif

/* Function to compute outputs */
static void mdlOutputs(SimStruct *S, int_T tid)
{
#ifndef MATLAB_MEX_FILE
 int width = (int)mxGetPr(WIDTH_ARG)[0]; /* specify output port width */
 int port = (int)mxGetPr(PORT_ARG)[0] - 1; /* specify COM# */
 unsigned char tmp; /* temp char holder */
 unsigned char *buf = (unsigned char *)ssGetDWork(S, 0); /* uchar buffer to contain

bytes from serial port*/
 int *current = ssGetIWork(S);/* current = addr of current position pointer in buf */
 int *recLength = ssGetIWork(S) + 1; /* recLength = addr of receieved data length */
 int *bufCount = ssGetIWork(S)+ 2; /* count number of useful bytes in buf. */
 int serbufCount; /* count number of useful bytes collected in Serial buf*/
 int HeaderFound, i, j, bufStop, sumbytes, chksum;
 int nextbytetoprocess, lastHeaderPos, EOB;

if (ssGetInputPortRealSignal(S, 1)[0] == 0) /* function is disabled. Stop
processing and get out */

return;

 serbufCount = rl32eReceiveBufferCount(port); /* Check number of bytes available */

 while (serbufCount) { /* transfer everything in serial buffer to buf */
 tmp = rl32eReceiveChar(port);
 if ((tmp & 0xff00) != 0) { /* only last 8 bits can be non-zero */
 printf("RS232Receive Error: char & 0xff00 != 0 \n");
 return;
 }

 buf[(*current)++] = tmp & 0xff; /* put valid char into buf */
 serbufCount--; /* reduce serbufCount */
 (*bufCount)++; /* increase bufCount correspondingly */
 }

// FROM HERE, IMPLEMEMT CHECKSUM COMPUTATION & TRANSFER DECODED MESSAGE TO OUTPUT

 88

 HeaderFound = 0;
 i = 0;
 EOB = 0;

 if (*bufCount<30) return; // Not enough bytes to decode, output old value

 while (HeaderFound==0) {

 /* find Header byte */
 while (buf[i] != HEADER) {
 if (i < *bufCount) i++;
 else {EOB = 1;
 break;}
 } /* at exit, buf[i] = HEADER or EOB =1 */

 if (EOB == 1) {
 nextbytetoprocess = lastHeaderPos;
 break;
 }

 if (*bufCount - i < width-1) {
 nextbytetoprocess = i;
 break;
 }
 else {
 sumbytes = 0; /* Compute checksum */
 for (j=1;j<width-1;j++) {
 sumbytes = sumbytes + buf[i+j];
 }
 chksum = sumbytes % 256;

 if (chksum == buf[i+width-1]) {
 HeaderFound = 1;
 memcpy(ssGetOutputPortSignal(S,1),buf+i,width);
 nextbytetoprocess = i + width;
 } // if checksum tally
 else { // checksum doesn't tally
 lastHeaderPos = i;
 i++; //skip current FF, find next FF
 }
 } //else
 } /* while HeaderFound = 0*/

 if (*bufCount>100) { //BufCount large, too many old bytes, flush buffer
 *bufCount = 0;
 *current = *bufCount;
 }
 else { // Pack useful bytes in buf to front of buf for next routine call
 bufStop = *bufCount; // bufStop = no. of bytes in pre-packed buf

 *bufCount = *bufCount - nextbytetoprocess; // bufCount = no. of
bytes after packing

 i = 0;
 for (j=nextbytetoprocess;j<bufStop;j++) {
 buf[i] = buf[j];
 i++;
 }
 *current = *bufCount; // update pointer to end of buf
 }

 ssCallSystemWithTid(S, 0, 0); /* issue done pulse to outport 0 */

 return;

#endif
}

/* Function to perform housekeeping at execution termination */

 89

static void mdlTerminate(SimStruct *S)
{
}

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */
#include "simulink.c" /* MEX-file interface mechanism */
#else
#include "cg_sfun.h" /* Code generation registration function */
#endif

2. GPS DATA RECEIVE DRIVER

/*-- */
/* TRIMBLE GPS Interface Driver */
/* This routine is a modification of the rs232brec.c routine from Mathworks. */
/* Function: Receive undelimited RS232 bytes from Ag132 GPS. Search for sentence */
/* header '$'. Compute checksum for next 5 bytes to determine if sentence*/
/* is 'GPGGA' or 'GPRMC'. Form message, output message at Port1 in */
/* X byte width, output Header Index at Port2 to identify 'GPGGA' */
/* or 'GPRMC' for follow-on processing. */
/* X = is max width of message specified by user in block's mask */
/* Original Feb 1, 2002 */
/* Revised Mar 11, 2002 */
/* Filename: gpsrcv.c */
/* Written by: Bock-Aeng Lim and Dr. Vladimir Dobohodkov */
/*-- */
/* Original comments:
/* $Revision: 1.1 $ $Date: 2001/07/20 22:11:41 $ */
/* rs232rec.c - xPC Target, non-inlined S-function driver for RS-232 receive */

#define S_FUNCTION_LEVEL 2
#undef S_FUNCTION_NAME
#define S_FUNCTION_NAME gpsrcv

#include <stddef.h>
#include <stdlib.h>

#include "tmwtypes.h"
#include "simstruc.h"

#ifdef MATLAB_MEX_FILE
#include "mex.h"
#else
#include <windows.h>
#include <string.h>
#include "rs232_xpcimport.h"
#include "time_xpcimport.h"
#endif

/* Input Arguments */
#define NUMBER_OF_ARGS (3)
#define PORT_ARG ssGetSFcnParam(S,0)
#define WIDTH_ARG ssGetSFcnParam(S,1) /* max width is the max length of GPS
sentence */
#define SAMP_TIME_ARG ssGetSFcnParam(S,2)

#define NO_I_WORKS (3) /* current pos ptr in buf, rec length, bufCount*/
#define NO_R_WORKS (0)
#define NO_P_WORKS (0)
#define NO_D_WORKS (1) /* for buf array */

#define HEADER (36) // $- sign

static char_T msg[256];
extern int rs232ports[];

// unsigned char* gl_buf; global variable to save captured bytes between sample steps

 90

static void mdlInitializeSizes(SimStruct *S)
{
#ifndef MATLAB_MEX_FILE
#include "rs232_xpcimport.c"
#include "time_xpcimport.c"
#endif

 ssSetNumSFcnParams(S, NUMBER_OF_ARGS);
 if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {
 sprintf(msg,"Wrong number of input arguments passed.\n"
 "%d arguments are expected\n",NUMBER_OF_ARGS);
 ssSetErrorStatus(S,msg);
 return;
 }

 /* Set-up size information */
 ssSetNumContStates(S, 0);
 ssSetNumDiscStates(S, 0);
 ssSetNumOutputPorts(S, 3); /* fuc-call,data, header ind */
 ssSetNumInputPorts(S, 2); /* rec length, enable */

 ssSetOutputPortWidth(S, 0, 1); /* Function-call */

 ssSetOutputPortWidth(S, 1, (int)mxGetPr(WIDTH_ARG)[0]);/* Data */
 ssSetOutputPortDataType(S, 1, SS_UINT8);

 ssSetOutputPortWidth(S, 2, 1); /* Header index */
 ssSetOutputPortDataType(S, 2, SS_UINT8);

 ssSetInputPortDirectFeedThrough(S, 0, 1);
 ssSetInputPortDirectFeedThrough(S, 1, 1);
 ssSetInputPortWidth(S, 0, 1);
 ssSetInputPortWidth(S, 1, 1);

 ssSetInputPortRequiredContiguous(S, 0, 1);
 ssSetInputPortRequiredContiguous(S, 1, 1);

 ssSetNumSampleTimes(S,1);
 ssSetNumIWork(S, NO_I_WORKS);
 ssSetNumRWork(S, NO_R_WORKS);
 ssSetNumPWork(S, NO_P_WORKS);
 ssSetNumDWork(S, NO_D_WORKS);

 ssSetDWorkDataType(S, 0, SS_UINT8);
 ssSetDWorkWidth(S, 0, (int)mxGetPr(WIDTH_ARG)[0]);
 ssSetDWorkWidth(S, 0, 2048);

 ssSetNumModes(S, 0);
 ssSetNumNonsampledZCs(S, 0);

 ssSetSFcnParamNotTunable(S,0);
 ssSetSFcnParamNotTunable(S,1);
 ssSetSFcnParamNotTunable(S,2);

 ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE | SS_OPTION_PLACE_ASAP);
}

/* Function to initialize sample times */
static void mdlInitializeSampleTimes(SimStruct *S)
{
 ssSetSampleTime(S, 0, mxGetPr(SAMP_TIME_ARG)[0]);
 if (mxGetN((SAMP_TIME_ARG))==1) {
 ssSetOffsetTime(S, 0, 0.0);
 } else {
 ssSetOffsetTime(S, 0, mxGetPr(SAMP_TIME_ARG)[1]);
 }
 ssSetCallSystemOutput(S, 0);
}

 91

#define MDL_START /* Change to #undef to remove function */
#if defined(MDL_START)
static void mdlStart(SimStruct *S)
{
#ifndef MATLAB_MEX_FILE

 ssGetIWork(S)[0] = 0; /* set current buf pointer = 0 */
 ssGetIWork(S)[2] = 0; /* set bufCount = 0 */

#endif
}
#endif

/* Function to compute outputs */
static void mdlOutputs(SimStruct *S, int_T tid)
{
#ifndef MATLAB_MEX_FILE
 int width = (int)mxGetPr(WIDTH_ARG)[0]; /* specify output port width
=WIDTH_ARG that is the max length of GPS sentence */
 int port = (int)mxGetPr(PORT_ARG)[0] - 1; /* specify COM# */
 unsigned char tmp; /* temp char holder
*/
 unsigned char *buf = (unsigned char *)ssGetDWork(S, 0); /* uchar buffer to contain
bytes from serial port*/
 int *current = ssGetIWork(S); /* current = addr of
current position pointer in buf */
 int *recLength = ssGetIWork(S) + 1; /* recLength = addr of
receieved data length */
 int *bufCount = ssGetIWork(S)+ 2; /* count number of useful
bytes in buf. */
 int serbufCount; /* count number of
useful bytes collected in Serial buf*/
 int HeaderFound, i, j, bufStop, chksum, nextbytetoprocess, lastHeaderPos, EOB;
 int GGA=358,RMC=377;// checksum of 'GPGGA','GPRMC' sentences's header
 int* bl_header;// boolean values for GGA=1 and RMC=2 sentences, 0=nothing found
 int headwidth=5;// length of GPS header except '$'

 if (ssGetInputPortRealSignal(S, 1)[0] == 0) /* function is disabled. Stop
processing and get out */
 return;

 serbufCount = rl32eReceiveBufferCount(port); /* Check number of bytes available
*/

 while (serbufCount)
 { /* transfer everything in serial buffer to buf */
 tmp = rl32eReceiveChar(port);
 if ((tmp & 0xff00) != 0)
 { /* only last 8 bits can be non-zero */
 printf("RS232Receive Error: char & 0xff00 != 0 \n");
 return;
 }
 buf[(*current)++] = tmp & 0xff; /* put valid char into buf */
 serbufCount--; /* reduce serbufCount */
 (*bufCount)++; /* increase
bufCount correspondingly */
 }
 /*Initialize logical flags*/
 HeaderFound = 0;
 i = 0;
 EOB = 0;//end of buffer

 if (*bufCount<width) return; // Not enough bytes to decode, output old value

 while (HeaderFound==0)
 {/* find Header byte = '$'=36 */
 while (buf[i] != HEADER)
 {
 if (i < *bufCount) i++;

 92

 else
 {
 EOB = 1; break;
 }
 } /* at exit, buf[i] = HEADER or EOB =1 */

 if (EOB == 1)
 { nextbytetoprocess = lastHeaderPos;
 break;
 }//end of if

 if (*bufCount - i < width-1)
 { nextbytetoprocess = i;
 break;
 }
 else
 {chksum = 0; /* Compute checksum */
 for (j=1;j<headwidth+1;j++)
 {
 chksum = chksum + buf[i+j];
 }
 }// calculate "checksum" of GPS header={$GPGGA,$GPRMC}
 if (chksum == GGA)
 { HeaderFound = 1;
 *bl_header=1;
 ggalng=0;
 while(*(buf+i+headwidth+1+ggalng) != 13) ggalng++; //"0D"=13,
 memcpy(ssGetOutputPortSignal(S,1),buf+i+headwidth+1,ggalng);
 nextbytetoprocess = i + ggalng;
 } // if checksum tally
 else
 {
 if (chksum == RMC)
 { HeaderFound = 1;
 *bl_header=2;
 rmclng = 0;

 while(*(buf+i+headwidth+1+rmclng) != 13) rmclng++;
 memcpy(ssGetOutputPortSignal(S,1),buf+i+headwidth+1,rmclng);
 nextbytetoprocess = i + rmclng;
 } // if checksum tally
 else
 { // checksum doesn't tally
 lastHeaderPos = i;
 *bl_header=0;
 }// end of checksum searching
 }

 memcpy(ssGetOutputPortSignal(S,2),bl_header,1);

 } /* while HeaderFound = 0*/

 if (*bufCount>300)
 { // If bufCount too large, too many old bytes, just flush buffer
 *bufCount = 0;
 *current = *bufCount;
 }
 else { // Pack useful bytes in buf to front of buf.
 bufStop = *bufCount; // bufStop = no. of bytes in pre-packed buf

 *bufCount = *bufCount - nextbytetoprocess; // bufCount = no. of
bytes after packing

 i = 0;
 for (j=nextbytetoprocess;j<bufStop;j++)
 {
 buf[i] = buf[j];
 i++;
 }
 *current = *bufCount; // update pointer to end of buf
 }

 ssCallSystemWithTid(S, 0, 0); /* issue done pulse to outport 0 */
 return;

 93

#endif
}

/* Function to perform housekeeping at execution termination */
static void mdlTerminate(SimStruct *S)
{
}

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */
#include "simulink.c" /* MEX-file interface mechanism */
#else
#include "cg_sfun.h" /* Code generation registration function */
#endif

3. GPS GPGGA MESSAGE DECODER

/*-- */
/* GPGGA MESSAGE DECODING ROUTINE */
/* Function: This routine decodes the output from gpsrcv block and decode the */
/* GPGGA message. */
/* Feb 1, 2002 */
/* Filename: gpgga.c */
/* Written by: Vladimir Dobohodkov */
/*-- */
/*
 * File : gpgga.c
 * $Revision: 1.00 $V.Dobrokhodov
 */

#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#include <iostream.h>
#include <string.h>

#define S_FUNCTION_NAME gpgga
#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

/* Input Arguments */
#define NUMBER_OF_ARGS (1)
#define WIDTH ssGetSFcnParam(S,0) /* WIDTH is the max length of incoming
GPS sentence */

/*================*
 * Build checking *
 ================/
static char_T msg[256];

/* Function: mdlInitializeSizes ===
 * Abstract:
 * Setup sizes of the various vectors.
 */
static void mdlInitializeSizes(SimStruct *S)
{
 ssSetNumSFcnParams(S, NUMBER_OF_ARGS);
 if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {
 sprintf(msg,"Wrong number of input arguments passed.\n"
 "%d arguments are expected\n",NUMBER_OF_ARGS);
 ssSetErrorStatus(S,msg);
 return; /* Parameter mismatch will be reported by Simulink */
 }

 if (!ssSetNumInputPorts(S, 1)) return;
 ssSetInputPortWidth(S, 0, (int)mxGetPr(WIDTH)[0]);//DYNAMICALLY_SIZED

 94

 ssSetInputPortDirectFeedThrough(S, 0, 1);

 if (!ssSetNumOutputPorts(S,1)) return;
 ssSetOutputPortWidth(S, 0, 14);//14DYNAMICALLY_SIZED

 ssSetNumSampleTimes(S, 1);

 /* Take care when specifying exception free code - see sfuntmpl_doc.c */
 ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE |
 SS_OPTION_USE_TLC_WITH_ACCELERATOR);
}

/* Function: mdlInitializeSampleTimes ===
 * Abstract:
 * Specifiy that we inherit our sample time from the driving block.
 */
static void mdlInitializeSampleTimes(SimStruct *S)
{
 ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME);
 ssSetOffsetTime(S, 0, 0.0);
}

int gpssmbl(int_T* input,int length)
{
 char tmp[]="\0",output[]="\0";
 int i,gpstmp;
 for (i=0;i<length;i++)
 { tmp[0]=(char)(*input);strncat(output,tmp,1);input++;}
 switch (output[0])
 { case 'N': gpstmp=0;break;/*North*/
 case 'E': gpstmp=1;break;/*East*/
 case 'S': gpstmp=2;break;/*South*/
 case 'W': gpstmp=3;break;/*West*/
 case 'A': gpstmp=4;break;/*Valid or Autonomous*/
 case 'D': gpstmp=5;break;/*Differential*/
 case 'V': gpstmp=6;break;/*Non-Valid*/
 case 'M': gpstmp=7;break;/*Meters*/
 default: gpstmp=6;break;/*Non-Valid*/
 }/*end of switch*/
 return gpstmp;
};// end of gpssmbl

/* Function: bin2ascii ===
 Abstract: function provides GPS data convertion to ASCII and then to FLOAT
representations */
void bin2ascii(int_T* in,int length, char* ext)
{ int* input=in;
 char tmp[]="\0";
 int i;
 for (i=0;i<length;i++)
 {
 tmp[0]=(char)(*input);
 strncat(ext,tmp,1);
 input++;
 }
};// end of bin2ascii

/* Function: mdlOutputs ===
 * Abstract:
 *
 */
static void mdlOutputs(SimStruct *S, int_T tid)
{
 int_T i=0,j=0;
 InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);/* Incoming data stream*/
 real_T *y = ssGetOutputPortRealSignal(S,0);
 /*int_T width = ssGetOutputPortWidth(S,0);*/

 95

 /**/
 int_T tempbuf[100]; //here we make an aliase for the uPtrs
 char ext[]="\0";
 int count=0,len_in;
 double sys[20];//output array of decoded data
 double res[1]={0}; //output piece of decoded data
 real_T tmp;
 /**/
 for (i=0; i<(*uPtrs[0]); i++){tempbuf[i] = (int_T)(*uPtrs[i+1]);}
 /**/

 //GPGGA sentence of GPS message
 i=0;
 if ((real_T) tempbuf[i] != (real_T) 44)
 { /*printf("\n Error! 44 expected, received %d",*tempbuf);*/
 return;}
 else count++; /*miss first comma sign and define shift*/

 /* UTC & Latitude -1,2*/
 for(i=0;i<2;i++)
 {
 len_in=0;/*initialize it again*/
 while (tempbuf[count+len_in] != 44)
 {++len_in;}//end of while to count the length of GPS field - looking for next
","{44-ASCII}
 bin2ascii((tempbuf+count),len_in,ext);
 *y++=(real_T)atof(ext);
 *ext=NULL;/*initialize it again*/
 count+=len_in+1;//miss next comma sign and define new shift
 }/*end of for*/

 /*Direction of latitude -3*/
 len_in=0;/*initialize it again*/
 while (tempbuf[count+len_in] != 44)
 {++len_in;}//end of while to count the length of GPS field - looking for next
","{44-ASCII}
 *y++=gpssmbl((tempbuf+count),len_in);
 count+=len_in+1;//miss next comma sign and define new shift

 /*Longitude -4*/
 len_in=0;/*initialize it again*/
 while (tempbuf[count+len_in] != 44)
 {++len_in;}//end of while to count the length of GPS field - looking for next
","{44-ASCII}
 bin2ascii((tempbuf+count),len_in,ext);
 *y++=(real_T)atof(ext);
 *ext=NULL;/*initialize it again*/
 count+=len_in+1;//miss next comma sign and define new shift

 /*Direction of longitude -5*/
 len_in=0;/*initialize it again*/
 while (tempbuf[count+len_in] != 44)
 {++len_in;}//end of while to count the length of GPS field - looking for next
","{44-ASCII}
 *y++=gpssmbl((tempbuf+count),len_in);
 count+=len_in+1;//miss next comma sign and define new shift

 /*GPS quality indicator -6;
 Number of SVs -7;
 HDOP -8;
 Antenna height -9*/

 for(i=0;i<4;i++)
 {
 len_in=0;/*initialize it again*/
 while (tempbuf[count+len_in] != 44)
 {++len_in;}//end of while to count the length of GPS field - looking for next
","{44-ASCII}
 bin2ascii((tempbuf+count),len_in,ext);
 *y++=(real_T)atof(ext);

 96

 *ext=NULL;/*initialize it again*/
 count+=len_in+1;//miss next comma sign and define new shift
 }/* end of for*/

 /*Altitude in meters -10*/
 len_in=0;/*initialize it again*/
 while (tempbuf[count+len_in] != 44)
 {++len_in;}//end of while to count the length of GPS field - looking for next
","{44-ASCII}
 *y++=gpssmbl((tempbuf+count),len_in);
 count+=len_in+1;//miss next comma sign and define new shift

 /*Geoidal separation -11*/
 len_in=0;/*initialize it again*/
 while (tempbuf[count+len_in] != 44)
 {++len_in;}//end of while to count the length of GPS field - looking for next
","{44-ASCII}
 bin2ascii((tempbuf+count),len_in,ext);
 *y++=(real_T)atof(ext);
 *ext=NULL;/*initialize it again*/
 count+=len_in+1;//miss next comma sign and define new shift

 /*Geoidal separation in meters -12*/
 len_in=0;/*initialize it again*/
 while (tempbuf[count+len_in] != 44)
 {++len_in;}//end of while to count the length of GPS field - looking for next
","{44-ASCII}
 *y++=gpssmbl((tempbuf+count),len_in);
 count+=len_in+1;//miss next comma sign and define new shift

 /*Age of DGPS data -13*/
 len_in=0;/*initialize it again*/
 while (tempbuf[count+len_in] != 44)
 {++len_in;}//end of while to count the length of GPS field - looking for next
","{44-ASCII}
 bin2ascii((tempbuf+count),len_in,ext);
 *y++=(real_T)atof(ext);
 *ext=NULL;/*initialize it again*/
 count+=len_in+1;//miss next comma sign and define new shift

 /*Base station ID-14*/
 len_in=0;/*initialize it again*/
 while (tempbuf[count+len_in] != 42)/*42 ='*' It's the beginning of next gps
message*/
 {++len_in;}//end of while to count the length of GPS field - looking for next
","{44-ASCII}
 bin2ascii((tempbuf+count),len_in,ext);
 *y++=(real_T)atof(ext);
 *ext=NULL;/*initialize it again*/
 count+=len_in+1;//miss next comma sign and define new shift
 /*END of DGPS GGA sentence*/
/**/
}

/* Function: mdlTerminate ===
 * Abstract:
 * No termination needed, but we are required to have this routine.
 */
static void mdlTerminate(SimStruct *S)
{
}

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */
#include "simulink.c" /* MEX-file interface mechanism */
#else
#include "cg_sfun.h" /* Code generation registration function */
#endif

 97

4. GPS GPRMC MESSAGE DECODER

/*-- */
/* GPRMC MESSAGE DECODING ROUTINE */
/* Function: This routine decodes the output from gpsrcv block and decode the */
/* GPRMC message. */
/* Feb 1, 2002 */
/* Filename: gprmc.c */
/* Written by: Vladimir Dobohodkov */
/*-- */
/*
 * File : gprmc.c
 * $Revision: 1.00 $V.Dobrokhodov
 */

#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#include <iostream.h>
#include <string.h>

#define S_FUNCTION_NAME gprmc
#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

/* Input Arguments */
#define NUMBER_OF_ARGS (1)
#define WIDTH ssGetSFcnParam(S,0) /* WIDTH is the max length of incoming
GPS sentence */

/*================*
 * Build checking *
 ================/
static char_T msg[256];

/* Function: mdlInitializeSizes ===
 * Abstract:
 * Setup sizes of the various vectors.
 */
static void mdlInitializeSizes(SimStruct *S)
{

 ssSetNumSFcnParams(S, NUMBER_OF_ARGS);
 if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {
 sprintf(msg,"Wrong number of input arguments passed.\n"
 "%d arguments are expected\n",NUMBER_OF_ARGS);
 ssSetErrorStatus(S,msg);
 return; /* Parameter mismatch will be reported by Simulink */
 }

 if (!ssSetNumInputPorts(S, 1)) return;
 ssSetInputPortWidth(S, 0, (int)mxGetPr(WIDTH)[0]);//DYNAMICALLY_SIZED
 ssSetInputPortDirectFeedThrough(S, 0, 1);

 if (!ssSetNumOutputPorts(S,1)) return;
 ssSetOutputPortWidth(S, 0,12);//12=RMC

 ssSetNumSampleTimes(S, 1);

 /* Take care when specifying exception free code - see sfuntmpl_doc.c */
 ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE |
 SS_OPTION_USE_TLC_WITH_ACCELERATOR);
}

/* Function: mdlInitializeSampleTimes ===
 * Abstract:

 98

 * Specifiy that we inherit our sample time from the driving block.
 */
static void mdlInitializeSampleTimes(SimStruct *S)
{
 ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME);
 ssSetOffsetTime(S, 0, 0.0);
}
/* Function: gps_smbl ===
 * Abstract: function provides GPS symbol informatin processing */

int gps_smbl(int_T* input,int length)
{
 char tmp[]="\0",output[]="\0";
 int i,gpstmp;
 for (i=0;i<length;i++)
 { tmp[0]=(char)(*input);strncat(output,tmp,1);input++;}
 switch (output[0])
 { case 'N': gpstmp=0;break;/*North*/
 case 'E': gpstmp=1;break;/*East*/
 case 'S': gpstmp=2;break;/*South*/
 case 'W': gpstmp=3;break;/*West*/
 case 'A': gpstmp=4;break;/*Valid or Autonomous*/
 case 'D': gpstmp=5;break;/*Differential*/
 case 'V': gpstmp=6;break;/*Non-Valid*/
 case 'M': gpstmp=7;break;/*Meters*/
 default: gpstmp=6;break;/*Non-Valid*/
 }/*end of switch*/
 return gpstmp;
};// end of gps_smbl

/* Function: bin2_ascii ===
 Abstract: function provides GPS data convertion to ASCII and then to FLOAT
representations */
void bin2_ascii(int_T* in,int length, char* ext)
{ int* input=in;
 char tmp[]="\0";
 int i;
 for (i=0;i<length;i++)
 {
 tmp[0]=(char)(*input);
 strncat(ext,tmp,1);
 input++;
 }
};// end of bin2_ascii

/* Function: mdlOutputs ===
 * Abstract:
 *
 */
static void mdlOutputs(SimStruct *S, int_T tid)
{
 int_T i=0,j=0;
 InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);/* Incoming data stream*/
 real_T *y = ssGetOutputPortRealSignal(S,0);
 /*int_T width = ssGetOutputPortWidth(S,0);*/

 /***********************Interface for C++ programm**********************************/
 int_T tempbuf[100]; //here we make an aliase for the uPtrs
 char ext[]="\0";
 int count=0,len_in;
 double sys[20];//output array of decoded data
 double res[1]={0}; //output piece of decoded data
 real_T tmp;
 /**********************Merge data to temporary array***************************/
 for (i=0; i<(*uPtrs[0]); i++){tempbuf[i] = (int_T)(*uPtrs[i+1]);}
 /**/

 //GPRMC sentence of GPS message

 99

 i=0;
 if ((real_T) tempbuf[i] != (real_T) 44) return;
 else count++; /*miss first comma sign and define shift*/

 /* UTC -1*/
 len_in=0;/*initialize it again*/
 while (tempbuf[count+len_in] != 44)
 {++len_in;}//end of while to count the length of GPS field - looking for next
","{44-ASCII}
 bin2_ascii((tempbuf+count),len_in,ext);
 *y++=(real_T)atof(ext);
 *ext=NULL;/*initialize it again*/
 count+=len_in+1;//miss next comma sign and define new shift

 /*Status -2*/
 len_in=0;/*initialize it again*/
 while (tempbuf[count+len_in] != 44)
 {++len_in;}//end of while to count the length of GPS field - looking for next
","{44-ASCII}
 *y++=gps_smbl((tempbuf+count),len_in);
 count+=len_in+1;//miss next comma sign and define new shift

 /*Latitude -3*/
 len_in=0;/*initialize it again*/
 while (tempbuf[count+len_in] != 44)
 {++len_in;}//end of while to count the length of GPS field - looking for next
","{44-ASCII}
 bin2_ascii((tempbuf+count),len_in,ext);
 *y++=(real_T)atof(ext);
 *ext=NULL;/*initialize it again*/
 count+=len_in+1;//miss next comma sign and define new shift

 /*Latitude direction -4*/
 len_in=0;/*initialize it again*/
 while (tempbuf[count+len_in] != 44)
 {++len_in;}//end of while to count the length of GPS field - looking for next
","{44-ASCII}
 *y++=gps_smbl((tempbuf+count),len_in);
 count+=len_in+1;//miss next comma sign and define new shift

 /*Longitude -5*/
 len_in=0;/*initialize it again*/
 while (tempbuf[count+len_in] != 44)
 {++len_in;}//end of while to count the length of GPS field - looking for next
","{44-ASCII}
 bin2_ascii((tempbuf+count),len_in,ext);
 *y++=(real_T)atof(ext);
 *ext=NULL;/*initialize it again*/
 count+=len_in+1;//miss next comma sign and define new shift

 /*Direction of logitude -6*/
 len_in=0;/*initialize it again*/
 while (tempbuf[count+len_in] != 44)
 {++len_in;}//end of while to count the length of GPS field - looking for next
","{44-ASCII}
 *y++=gps_smbl((tempbuf+count),len_in);
 count+=len_in+1;//miss next comma sign and define new shift

 /*Speed over ground[knots] -7*/
 len_in=0;/*initialize it again*/
 while (tempbuf[count+len_in] != 44)
 {++len_in;}//end of while to count the length of GPS field - looking for next
","{44-ASCII}
 bin2_ascii((tempbuf+count),len_in,ext);
 *y++=(real_T)atof(ext);
 *ext=NULL;/*initialize it again*/
 count+=len_in+1;//miss next comma sign and define new shift

 /*Track made good,True[degree] -8*/
 len_in=0;/*initialize it again*/

 100

 while (tempbuf[count+len_in] != 44)
 {++len_in;}//end of while to count the length of GPS field - looking for next
","{44-ASCII}
 bin2_ascii((tempbuf+count),len_in,ext);
 *y++=(real_T)atof(ext);
 *ext=NULL;/*initialize it again*/
 count+=len_in+1;//miss next comma sign and define new shift

 /*Date in dd/mm/yy -9;
 Manetic variation [degree] -10;*/

 for(i=0;i<2;i++)
 {
 len_in=0;/*initialize it again*/
 while (tempbuf[count+len_in] != 44)
 {++len_in;}//end of while to count the length of GPS field - looking for next
","{44-ASCII}
 bin2_ascii((tempbuf+count),len_in,ext);
 *y++=(real_T)atof(ext);
 *ext=NULL;/*initialize it again*/
 count+=len_in+1;//miss next comma sign and define new shift
 }/* end of for*/

 /*Direction of Magnetic variation-11*/
 len_in=0;/*initialize it again*/
 while (tempbuf[count+len_in] != 44)
 {++len_in;}//end of while to count the length of GPS field - looking for next
","{44-ASCII}
 *y++=gps_smbl((tempbuf+count),len_in);
 count+=len_in+1;//miss next comma sign and define new shift

 /*Mode indicator(A(4)-autonomous;D(5)-differencial;N(0)-not valid) -12*/
 len_in=0;/*initialize it again*/
 while (tempbuf[count+len_in] != 42)/*=42*/
 {++len_in;}//end of while to count the length of GPS field - looking for next
","{44-ASCII}
 *y++=gps_smbl((tempbuf+count),len_in);
 count+=len_in+1;//miss next comma sign and define new shift

 /*END of DGPS RMC sentence*/
/**/
}

/* Function: mdlTerminate ===
 * Abstract:
 * No termination needed, but we are required to have this routine.
 */
static void mdlTerminate(SimStruct *S)
{
}

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */
#include "simulink.c" /* MEX-file interface mechanism */
#else
#include "cg_sfun.h" /* Code generation registration function */
#endif

 101

5. MATLAB CODE FOR LQR CONTROLLER DESIGN

close all;
clear all;
clc;

load frogabcd10; % load plant model
i = 1;

 rank(ctrb(as,bs)) % check that (A,B) is controllable and
 rank(obsv(as,cs'*cs)) % (A,Q) is observable. Criteria for LQR. Done only
once.

%% Design parameters for tzeros in synthesis.mdl
xi_h = 0.9;
wn_h = 0.4;
xi_v = 0.9;
wn_v = 1.2;
pole_vt = 0.7;
pole_psi = 1.5;

% Design parameters for LQR
q1 = diag([1, 1, 1, 1]); % increase qii, to increase cmd loop bw
r1 = diag([2000,5000,1500,2]); % decrease rii, to increase control loop bw

%% Obtaining the synthesis model
disp(' ');
disp('tranmission zeros of plant with Vt,h,v,psi output');
tzero(as,bs,cs,ds)
[as1,bs1,cs1,ds1] = linmod('synthesis'); %,'v5');
disp('transmssion zeros of synthesis model');
damp(tzero(as1,bs1,cs1,ds1))

synth = [1 2*xi_h*wn_h wn_h^2];
syntv = [1 2*xi_v*wn_v wn_v^2];
disp('Synthesis zeros are:')
damp(roots(synth));
damp(roots(syntv));
disp(-pole_vt);
disp(-pole_psi);

%% Computing the feedback gains
[k,p,e] = lqr(as1,bs1,cs1'*q1*cs1,r1);

%% Obtaining the closed-loop system
kp = k(:,1:10);
ki = k(:,11:14);
[ac,bc,cc,dc] = linmod('model10'); %,'v5');

%% Check criteria 1: Feedback system must be stable
disp('Ensure that all the closed loop poles are stable');
damp(eig(ac))

%% Now include actuator into model to see time-response
[ac1,bc1,cc1,dc1] = linmod('model10wAct'); %,'v5');
damp(eig(ac1))

% plots Vt_out to step input in Vt_cmd

figure(i); i=i+1;
step(ac1,bc1(:,5),cc1(5,:),dc1(5,5));
% axis([0 20 -0.2 1.8])
title('Vt out to step input in Vt cmd');

% plots h_out to step input in h_cmd
figure(i); i=i+1;
step(ac1,bc1(:,6),cc1(6,:),dc1(6,6));

 102

% axis([0 20 -0.2 1.8])
title('h out to step input in h cmd');
grid;

% plots v_out to step input in v_cmd
figure(i); i=i+1;
step(ac1,bc1(:,7),cc1(7,:),dc1(7,7));
% axis([0 20 -0.2 1.8])
title('v out to step input in v cmd');
grid;

% plots psi_out to step input in psi_cmd
figure(i); i=i+1;
step(ac1,bc1(:,8),cc1(8,:),dc1(8,8));
% axis([0 20 -0.2 1.8])
title('psi out to step input in psi cmd');
grid;

%% Criteria 5: Aileron, Elevator, Rudder loop bandwidth < 10 rad/s
%% Thrust loop bandwidth < 5 rad/s

figure(i); i=i+1;
margin(ac1,bc1(:,1),cc1(1,:),dc1(1,1))
title('Bode of closed loop from del aileron to aileron out. (BW ~ 10 rad/s)');

figure(i); i=i+1;
margin(ac1,bc1(:,2),cc1(2,:),dc1(2,2))
title('Bode of closed loop from del elevator to elevator out. (BW ~ 10 rad/s)');

figure(i); i=i+1;
margin(ac1,bc1(:,3),cc1(3,:),dc1(3,3))
title('Bode of closed loop from del rudder to rudder out. (BW ~ 10 rad/s)');

figure(i); i=i+1;
margin(ac1,bc1(:,4),cc1(4,:),dc1(4,4))
title('Bode of closed loop from del thrust to thrust out. (BW ~ 5 rad/s)');

%% Criteria 4: Gain margin in elevator and thrust loops should
%% be at least 6 db and phase margin 45 degrees.

[ao1,bo1,co1,do1] = linmod('open_a');
figure(i); i=i+1;
margin(ao1,bo1(:,1),co1(1,:),do1(1,1))
title('Bode of open loop from del aileron cmd to aileron out');
disp('Gain and phase margin for aileron loop');

[ao2,bo2,co2,do2] = linmod('open_e');
figure(i); i=i+1;
margin(ao2,bo2(:,2),co2(2,:),do2(2,2))
title('Bode of open loop from del elevator cmd to elevator out');
disp('Gain and phase margin for elevator loop');

[ao3,bo3,co3,do3] = linmod('open_r');
figure(i); i=i+1;
margin(ao3,bo3(:,3),co3(3,:),do3(3,3))
title('Bode of open loop from del rudder cmd to rudder out');
disp('Gain and phase margin for rudder loop');

[ao4,bo4,co4,do4] = linmod('open_th');
figure(i); i=i+1;
margin(ao4,bo4(:,4),co4(4,:),do4(4,4))
title('Bode of open loop from del thrust cmd to thrust out');
disp('Gain and phase margin for thrust loop');

break;

 103

LIST OF REFERENCES

1. Kaminer,I., Hespanha, J., Yakimenko, O., Proposal for study on “Distributed
Adaptive Architectures for Intelligent Sensor Fusion over Dynamic (Wireless)
Networks”, Oct 2000.

2. Froncillo, S., “Design of Digital Control Algorithms for UAV,” Master’s Thesis,

Naval Postgraduate School, Monterey, CA, March 1998.

3. Hallberg, E., “On Integrated Plant, Control and Guidance Design,” Ph.D

Dissertation, Naval Postgraduate School, Monterey, CA, September 1997.

4. Flood, C., “Design and Evaluation of a Digital Flight Control System for the

FROG Unmanned Aerial Vehicle,” Engineer’s Thesis, Naval Postgraduate
School, Monterey, CA, Sep 2001.

5. Flood, C. & Lim, B.A., “Alternate Servo Control for FROG UAV,” AA4642

Avionics II Class Project Report, Sep 2001.

6. Papageorgio, E., “Development of a Dynamic Model for a UAV,” Master’s

Thesis, Naval Postgraduate School, Monterey, CA, March 1997.

7. Blakelock, J.H., “Automatic control of aircraft and missiles,” New York, Wiley,

1965.

8. Blight, J., “Integral LQG Design Or: Modern Control Without Math”, Lecture,

Boeing Military Airplane Company.

9. Kaminer, I. et al., “A Velocity Algorithm for the Implementation of Gain-

scheduled Controllers,” Automatica, Vol. 31, No. 8, 1995.

10. Schmidt, L. V., “Introduction to Aircraft Flight Dynamics,” AIAA Education

Series, 1998.

11. Yakimenko, O. et al., “Unmanned Aircraft Navigation For Shipboard Landing

Using Infrared Vision,” accepted for publication in IEEE Transactions of
Aerospace and Electronics, 2002.

12. “MATLAB External Interfaces Version 6,” The MathWorks, Inc., Nov 2000.

13. “MATLAB Writing S-Functions Version 4,” The MathWorks, Inc., Nov 2000.

 104

THIS PAGE INTENTIONALLY LEFT BLANK

 105

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library

Naval Postgraduate School
Monterey, California

3. Prof. Isaac Kaminer, Dept. of Aeronautics and Astronautics
Naval Postgraduate School
Monterey, California

4. Prof. Oleg Yakimenko, Dept. of Aeronautics and Astronautics
Naval Postgraduate School
Monterey, California

5. Prof. Max Platzer, Dept. of Aeronautics and Astronautics

Naval Postgraduate School
Monterey, California

6. Dr. Vladimir Dobrokhodov, Dept. of Aeronautics and Astronautics
Naval Postgraduate School
Monterey, California

7. W. J. Lentz, Dept. of Aeronautics and Astronautics
Naval Postgraduate School

 Monterey, California

